
van der Waals Potentials

Approximate van der Waals interactions with arbitrary shapes can be found by integrating the
contribution from each volume element: 
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The most fundamental geometry is that of a half space where the potential above the surface
by a distance h is
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Redefining the potentials in terms of the half space form gives 
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For the surface of a sphere radius a, with h the distance from the surface,
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A one dimensional arbitrary corregation with attractive material filling the space z<f(x) has the potential
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convenient for numenrical integration.  Care must be taken through the region near x=u.

For practical reasons, it is convenient to define a van der Waals strength in terms of a temperature, Tv,

representing the approximate single particle binding energy to the flat surface, in this case gold.
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The helium mass is m4, the monolayer thickness is z1, and k is Boltzman's constant.  One final
refinement accounts for retardation effects at far distances, where the potential crosses over to a
1/z4 form.  The factor of zr 41.7 z1⋅=   is traditional for glass and may not be appropriate for gold.
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