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This is the outline of the transducer mechanical coupling through the disk-post resonator.  See "Stimulate
Condensation Resonator.xmcd" from the home pages for the third sound treatment from which this was
derived.

The modes are assumed to be those of the free disk, but corrections are included for the non-zero disk
width.  See "disk post plane.xmcd" and "free disk.xmcd" for a comparison of the actual modes.
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Physical Properties

ε0 8.85 10
12

 k 1.3805 10
23



sapphire Y 4 10
11

 ν 0.29 ρ 3980 a 0.0065 h 0.0005

εHe 1.055 εN2 1.438 for calibration purposes

Physical Properties

Disk Displacements

Numerical values from "annular plate vibrations.xmcd" for m=0 and m=2 modes...

ε 0.16 xm
0

2.17749 xm
2

2.46491



ψ m x( ) 0 x ε xm
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if

0.82571 Jn m x( ) 0.32409 In m x( ) 1.41689 Yn m x( ) 1.18341 Kn m x( ) m 0=if

3.64573 Jn m x( ) 0.68742 In m x( ) 0.25763 Yn m x( ) 0.17049 Kn m x( ) m 2=if
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Peak elastic energy in terms of the elastic properties

Uelastic
1

24
π

Y a
2

 h
3

 k
4



1 ν
2

 
 η0

2
=

Disk Displacements

Cell Properties



See "/stimulated condensation\pickup electrode shape.xmcd" for the original derivation.

The drive or pickup electrodes are assumed to be parallel plate gaps, neglecting any fringe fields.  Each
electrode is characterized by its area and a quantity (D or P below) reflecting its spatial overlap with the
mode of interest.  The active region of the electrodes are determined by the overlapping regions of the
disk (at ground potential) and the electrode plates (applied or circuit potential).

The disk outer radius (a) and the capacitor outer radius (R)
are different: The capacitor gap increases near the outer
radius of the disk due to the deviation from flatness of the
polished surface. (note that for the third sound modes, the
disk radius a is also artificially increased to account for the
wave overlapping the outer edge.

acutal disk oute radius a0 0.0065

disk thickness d 0.0005

effective flat disk radius (

a0
1

2
d  for third sound)

a a0

fraction of actual radius forming the
small gap

xgap 0.92
a 6.5 10

3


scaled capacitor outer radius R
xgap a0

a
 R 0.92

The "post cell" electrode geometry can be defined by two additional dimensions: The inner edge distance
from the center (A) and the length of this inner edge (B).  The outer edge is at the effective capacitor

radius (R) and the sides extend at 45o between the inner edge and outer radius, all scaled to the disk
radius a.

drive A
0.200 0.0254
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C is the scaled x value at the

intersections of the 45o lines and
the circle at R
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 square meters, both pickup plates in parallel

Drive and Pickup Integrals

These are the geometrical overlaps of the wave mode with the electrodes.  For convenience, they are
normalized to the full circle.  Their use is derived in the "Mode Details" section..  
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pickup plates alligned along
φ=0, integral uses cosine

both opposite plates -- extra
factor of 2 if even, zero if odd.

m=0 equivalent to sin(mx)/m=x
in the integrand

drive plate alligned along
the y axis (φ = π/2)

drive plate parameters A
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y-axis phase factor applied
to cosine integral

m=0 equivalent to sin(mx)/m=x
in the integrand with no phase
factor

Gap Calibration

The transducer coupling requires knowledge of the electrode geometry.  The area is assumed to be
known, but the gap is deduced from the experimental capacitance.  Experimentally, the LC oscillation
frequency of the pickup detector (the TDO) is the accessible quantity.  To get back to the pickup
capacitance, we need to know the inductance (L) of the LC circuit and the amount of any stray
capacitance NOT included as part of the gap.  The inductance and physical areas are assumed to be the
same as their room temperature determinations.  

We thus have two unknow quantities that need to be experimentally determined:  the gap and the stray
capacitance.  These unknowns are determined by the (1) the empty cell TDO frequency, and (2) the shift
in the TDO frequency when only the gap is filled with liquid.

cell TDO inductance L 0.365 10
6



empty TDO frequency ftdo 74513695



O017 - O022 Helium Fill
shift when filled Δffill 1506527

He or N2 dielectric ε εHe

ratio of pickup capacitance to total cpr

ftdo

ftdo Δffill









2

1

ε 1
 cpr 0.758

capacitances Ctot
1

2 π ftdo 2 L
 Cp cpr Ctot Cs Ctot Cp

pickup plates Cp 9.476 10
12

 other stray capacitances Cs 3.023 10
12



capacitor gap gap
ε0 Ap

Cp

 gap 2.401 10
5



ftdo 74093695

Cell Properties

Mode Details

Only the mechanical (0,0) and (2,0) modes are valid!

(2,0) m 2 fdrive 17860 Hz Q 29400

mode of interest xmn xm
m


xmn 2.465

Assumed drive voltage corrected for: (1) 3X
box factor of 3; and (2) 36 kHz amplitude
and phase shift of the transformer, if used.
See O72 for this correction. This phase
factor appropriately doubles  through the
squaring conversion below.

A3x 3.045 φ3x
73.6

180
π

Vd 0.5 A3x e
i φ3x



In the following, the drive frequency fdrive, is the actual frequency of the drive oscillator.  The applied force



will be at twice this frequency due to the electrostatic frequency doubling..   

fundamental resonance relations ω h
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drive and pickup ovelaps (two drives) D 2 D m( ) P P m( )

D 0.271 P 0.225

The transducer coupling is found by calculating the DC response of the mode to a fixed voltage, then
assuming a simple harmonic response to the AC drive.

The mode DC response to the drive is to be interpreted as the displacement of the mode, taken as a rigid
motion, in response to the static electric field in the capacitor.  The displacement is found by minimizing
the combined total elastic energy and the electrostatic energy.

The capacitance change of an electrode plate element with a plate
change h is found from the series combination of the vacuum and film
section elements of the electrode.  This is then integrated for the
parallel capacitance of all the elements.  This will be valid if the
wavelength of the mode is much greater than the gap.

Note that a positive displacement η is defined to reduce the electrode
gap.
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The total change is the integral over drive or pickup, expressed in terms of D or P defined earlier

ΔC
ε0

g
2

η Aψ




d=
ε π a

2


g
2

η
D

P









=

The electrostatic energy change of the drive plate includes the work done by the voltage source at Vd.
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The elastic energy is the same as the kinetic energy, which from the "Disk Displacements" section is...
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The AC response has 1/2 the amplitude at twice the frequency of the drive, from cos θ( )
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and the frequency dependence of a mass and spring: 
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disk mode amplitude ηmn 3.96 10
10

 6.145i 10
10

 m

TDO frequency modulation comes from the capacitance changes with the disk amplitude η 
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This is the mode sensitivity of the LC oscillator. The response to η is cut down by (1) the moderating
effect of the stray capacitance and (2) the shape of the mode within the pickup region. 
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Here's the theoretical frequency modulation of the TDO for all of the conditions specified previously...

fmn ηmn dfdη fmn 538.99 836.348i

Here is the complete expression in several forms η 10
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Note: All of the factors of 2 are associated with particular terms; The D factor applies to the full mechanica
area; The P factor only applies relative to the pickup electrode; The cpr factor accounts for non-pickup
capacitance. 

full theoretical elasticity
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full experimental elasticity
expression 
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fωmn 522.428 810.65i

Mode Details

Fit Prediction

Prediction for the Resonance Fits

At this point, we switch to the e
i ω t

 convention since both the lock-in and the fitscan program use
this sign for i.

fmn fmn




The "Phase-Locked-Loop" (PLL) detection system changes frequency shifts to voltage with some gain,
GPLL. This gain is calibrated by measuring the lockin response to a given modulation of the refewrence
oscillator. The PLLCAL program reports this response (at 2 fdrive ), which is opposite in sign to the

response to the signal frequency shifts.

GPLL

δVin

δf
= PLLCAL

δVlockin1

Δfref

=
ΔVlockin1

Δf
=

δVlockin1

δVin

1

2
= (1f mode)

so, with O76A scan PLLCAL 10.25 1.3i( ) 10
6

 GPLL 2 PLLCAL



The data, however, is measured with the lock-in referenced to the drive frequency, which gets frequency

doubled by the V2 electrostatic drive. As measured in "2f " mode. It is also reporteded as an RMS voltage
with an additional factor of i. (See O71 for a confirmation of this).

δVlockin2

δVin

i

2
= 2f mode

The lock-in signal on resonance is thenhe Vlockin fmn GPLL
δVlockin2

δVin

= i fmn PLLCAL=

The FitScan program takes the lock-in readings and fits to the form with Q factored into the amplitude:

Vlockin f( )
Afit

2 Q 1
f

f0









 i

x0 i y0= Afit complex=

So the resonant lock-in response would be Vlockin

Afit

i
=

predicted fit parameters Ath fmn PLLCAL

Ath 6.612 10
3

 7.872i 10
3



experimental fit O76A

m 2= f0 17860= Q 29400= Afit 0.00414 e
i 0.0081



sensitivity ratio SR
experimental

theoretical
= SR

Afit

Ath



SR 0.257 0.31i e
i ω t 

SR


0.257 0.31i e
i ω t 



Summary Results

old analysis (062?) with previous versions of the analysis

m 2= f 17860= Vd 1.5= Q 34000= PLL 3.55 0.25i=
μV

Hz

xmn 2.465= D 0.271= P 0.225=

ηdc 4.985 10
14

= m dfdη 10
9

 1369=
Hz

nm

ηmn 8.475i 10
10

= m fmn 1.16i 10
3

= Hz

Amn 290.001 4.118i 10
3

= μV

m 0= f 15580= Vd 1.5= Q 26000= PLL 3.25 0.1i=
μV

Hz

xmn 2.177= D 0.309= P 0.206=

ηdc 9.305 10
14

= m dfdη 10
9

 1252=
Hz

nm

ηmn 1.21i 10
9

= m fmn 1.514i 10
3

= Hz

Amn 151.407 4.921i 10
3

= μV

Fit Prediction

Revision History



Summer 2010
Modified the third sound analysis program, "stimulated condensation resonator.xmcd", into this document
and analyzed O062 (B15P062) mechanical scans.

09/08/10
Carefully added or modified:the 3x box phase shift, TDO-REF sign, on-resonance i, and 2f mode i. 

09/09/10
Changed the focus to predict (1) the mode amplitudes fmn and ηmn, then (2) the fit program parameters. Thi

physics from the detection. Older version saved as C:\Fred\Physics\FILMS\third
sound\resonators\stimulated_condensation\stimulated_condensation_disk_v1.xmcd
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