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Abstract

Parity-Time (PT) symmetry describes systems that are balanced with their environ-

ments, and the flow of energy is dictated by the geometric relationship of differential equations.

These equations of motion allow for gain-loss parameters to interact within systems. Previous

work on PT symmetry includes PT-lasers, PT-superconducting wires, and PT-nuclear magnetic

resonance. However, the behavior of large-scale magnetic PT-symmetry is unknown. Here we

address the large-scale equations of motions corresponding to a coupled magnetic system in a

background field analogous to a simplification of PT NMR. The numerical equations of motion

were solved, leading to computational and experimental exploration of the system. Loss in a

system can be implemented by geometrically placing a piece of aluminum near the dipole causing

magnetic drag induced by eddy currents. To establish gain, we implemented a feedback loop

system where the frequency is picked up by the pick-up coil and amplified by a Pre-Amp to

the drive coil, which makes the dipole spin faster. Due to mutual inductance, the coils were re-

stricted geometrically around the dipole such that the mutual inductance was zero. To drive the

dipole at its resonant frequency, we used a Raspberry Pi module with a HiFi Berry DAC/ADC

sound card to filter electromagnetic waves in python code to control the phase shifts of the

system. We were finally able to devolve a code that filters the waves continuously without any

errors, and we hope to get experimental results to confirm the simulations we have done. We

anticipate our study to indicate the behavior of magnetic two and one-way signal transmissions

in hopes of controlling electromagnetic waves. The addition of multi-coupled magnetic systems

can give further insight into electromagnetic systems. Furthermore, the application of magnetic

fields in the quantum regime of photons and electrons will be relevant for further development.

[2,8,11,12]
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Chapter 1
Introduction

1.1 Background

In 2010, a group collaboration between professor Ellis and professor Kottos started lead-

ing to the study of Non-Hermitian Hamiltonians and Parity-Time (PT) symmetry in different

systems. The Non-Hermiticity of these PT-symmetric systems is dependant on the magnitude

of a γ parameter. The γ parameter introduces a new degree of freedom that is tunable and

controls the dynamical behavior energy in a system. Values of γ below the γPT result in the real

solutions for dynamics of the system. This γ region is known as the exact PT-phase region. If

the values of γ are above γPT , then the solutions to the system’s dynamics will be complex. This

condition is known as the broken phase region. In our lab, many symmetric systems have been

examined by previous research students in an electronic framework. However, my project at-

tempts to shed light on the potential applications of implementing PT-symmetry in a magnetic

framework. As well as the integration of electronics with a PT-symmetric magnetic system.

[15]

1.2 Overview

Just as symmetry considerations have guided the development of many physics fields, I

am exploring the effects of PT-symmetry on various magnetic systems. PT-symmetry describes

1
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a system’s balance with its environment, where the geometric relationship between each element

in the system dictates the flow of energy, including the gain and loss parameter. The system

I am studying is a coupled two-dipole system where gain and loss are time-reversible while

the left and right dipoles are parity reversible. Time reversible refers to the behavior of the

system based on the flow of time. The dynamics of the two-dipole system get modeled by the

differential equations of motion, which will remain well-defined regardless of the directional flow

of time. Parity reversible is a flip in the signs of the terms of the differential equations, either

from positive to negative or vice versa, which results in a mirror image of the system. The two

dipoles can oscillate freely in the X-Y plane. Gain or loss gets implemented onto the dipoles by

taking energy away from one dipole via damping its oscillations while supplying energy to the

other dipole such that its oscillatory behavior is either sustained or increased. Figure 1.1 shows

an example of the system we are exploring. In the two-dipole system reversing time changes

the flow of gain and loss. The dipole that had loss implemented will now have gain, and the

dipole with gain now has a loss. Additionally, flipping the signs of the spatial coordinates of the

system will switch the position of the dipoles. Using the time or parity operator independently

will change the system, but applying both operations gives back an identical system. [2,15]

Figure 1.1: The image is an example of a two-dipole pair coupled to one another. Energy gets supplied to the

dipole with green magnetic field lines such that it oscillates at its resonant frequency. The second dipole with

red magnetic field lines is analogous to a dipole which is damped such that its oscillations slow down. The two

dipoles communicate with each other through their magnetic field lines resulting in a coupling behavior. The

distance is what determines the strength of the coupling between the two dipoles. [1]

Ultimately, the identifications of new behaviors in this two-dipole system can potentially

have applications in Nuclear Magnetic Resonance (NMR) Spectroscopy, signal transfer technol-

ogy, hypersensitive sensors, nonlinear motors, etc. The aim is to use PT-symmetry to improve

the sensitivity of NMRs by converting them into PT-NMRs. The principles of PT-symmetry
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have been applied successfully to electrical circuits, which have enabled more sensitive detection

circuits. Optical experiments and other theoretical investigations have led to the development of

unidirectional and multi-directional optical valves. Complete control of the flow of energy in any

system can result in multiple novel applications. However, before we can have total control over

a system, there are design and engineering challenges that need to get resolved. Such challenges

include implementing, controlling, and sustaining the gain and loss of energy for a given system.

In the PT-symmetric dipole system shown in figure 1.1, implementing energy gain and loss is

relatively easy computationally, but experimentally it becomes a challenge. Before going into

the computational and experimental methods used to analyze the two-dipole system of interest,

let’s examine the simple case of implementing gain and loss to a harmonic oscillator using a

feedback loop system. [2,14]

1.3 Gain/Loss of Simple Harmonic Oscillator

The most common example of a simple harmonic oscillator is a mass on a spring, as shown

in figure 1.2. The one-dimensional mass on a spring has a linear restoring force that obeys

Hooke’s Law (F = −kx). From Hooke’s Law, we can see that the restoring force is proportional

to the displacement of the mass from the equilibrium position. The equation of motion for the

simple harmonic oscillator can is obtainable with Newton’s Second Law (F = ma) and Hooke’s

Law. Rewriting the acceleration in terms of the second derivative of position and setting the

two forces equal to each other produces the second-order linear ordinary differential equation

that describes the dynamics of the harmonic oscillator shown in equation 1.1. [14]

F = m
d2x

dt2
= −kx (1.1)

Solving the differential equation above results in a sinusoidal solution with respect to

time for the position x(t) = Acos(ωt − φ), velocity v(t) = −Aωsin(ωt − φ), and acceleration

a(t) = −Aω2cos(ωt−φ). The φ in the solutions to the differential equation indicates a horizontal

translation of the sine or cosine function left or right along the x-axis, which is also referred to as

a phase shift. Additionally, the square proportionality of the spring constant (k) and the mass

of the object attached produce the angular frequency of oscillation of the system. Thus, the

harmonic oscillator has a angular frequency of ω =
√

k
m . From this the period of the harmonic
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oscillator can be obtained since ω = 2πf and T = 1
f , which means that T = 2π

ω = 2π
√

m
k .

[14]

Now the motion of the ideal simple harmonic oscillator, represented in equation 1.1, is

understood. Further parameters such as dampening or driving the system can get introduced. In

the dampening case, the energy of the system is dissipated into the environment continuously.

Generally, frictional forces dissipate the energy in the simple harmonic oscillator. There are

many ways of introducing dampening in the system, such as considering a larger air resistance,

friction on the floor the mass is sliding on, or even changing the surrounding medium the mass

and spring are from air to a viscous fluid. Either way, the result is the same; energy dissipates.

The dampening force is proportional to the velocity and is negative since it acts against the

direction of motion. Thus, the new equation of the system becomes F = ma = −bv − kx.

The solution to this differential equation is still a sinusoidal wave, but this time it oscillates in

the envelope of an exponentially decaying function x(t) = Ae−αtcos(ωt − φ) where α = b
2m .

The solution also has an angular frequency shifted from the natural angular frequency by α2.

Therefore, ω =

√
ω2

0 − b
2m

2
where ω0 =

√
k
m . Based on the different values of b, the oscillatory

response of the system will differ. When b =
√

4mk than ω = 0 which indicates that for any

value of b <
√

4mk the system will be underdamped, for b =
√

4mk the system is critically

damped, and for b >
√

4mk the system is overdamped. [14]

Since we understand the dynamical response of dampening a simple harmonic oscillator,

let us consider the oscillator with an additional driving force. For this situation, we can model

the system as shown in figure 1.2. [14]
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Figure 1.2: Image of a mass on spring with a controllable feedback loop. The feedback loop has sensors that

measure the displacement, a pre-amp that amplifies the signal, and a driver that applies a force to the mass/spring

system proportional to the measured signal. The applied force affects the motion of the entire system based on

the complex phase of the applied force. The amplifier magnifies the effects of the complex phase on the system.

[14]

Let’s assume, for the sensor and amplifier set up, that the feedback loop applies a force

at a specific angular frequency independent of the angular frequency of the harmonic oscillator.

The frequency of the driving force wave will also have a phase and amplitude associated with

it. Thus, the driving force gets simplified into the form of Acos(ωt+ φ) which will be different

from the solution to the harmonic oscillator with no dampening or driving force, which means

that we can alter equation 1.1 such that it looks like equation 1.2. [14]

F = m
d2x

dt2
+ kx = Adcos(ωdt+ φd) (1.2)

The subscript d represents the amplitude, frequency, and phase of the driving force.

The solution to the differential equation with no dampening in the system would be in the

form of x(t) = Asin(ωt + φ) + Adcos(ωdt + φd). The first term of the solution is the transient

solution which is determined by the initial conditions of the system. The second term of the

solution corresponds to the steady-state solution, which is determined by the driving force. If

the harmonic oscillator gets damped, the bv term would be reintroduced into equation 1.2, and

the transient solution would have an exponential function that would determine the envelope in

which the sinusoidal solution to the system would oscillate inside. From the solution x(t), we

can see that if in steady-state solution is in phase with the transient solution, then there will

be energy added to the system proportional to the amplitude of the steady-state driving wave.

However, if the phase of the steady-state solution is out of phase with the transient solution,
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then there will be energy loss in the system proportional to the amplitude of the steady-state

driving wave. Therefore, based on the phase, amplitude, and frequency of the driving force, full

control over the motion of the simple harmonic oscillator can be achieved through the feedback

loop. The feedback loop can theoretically be attached to a digital or analog amplifier, phase

shifter, and frequency filter in-between the sensor and driver to gain control over each parameter

to a specific degree of accuracy. [14]

Let’s examine, in more detail, how the simple harmonic oscillator interacts with the

feedback loop without external dampening. The feedback loop senses the motion of the oscilla-

tor, amplifies it, and sends it back to the oscillator, which directly influences the dynamics of

the system. Specifically, the sensor measures the change in position for the mass (x); the dis-

placement. The amplifier multiplies the measurement by a complex exponential in the form of

Geiφ. Thus, the drive will apply a force onto the mass and spring proportional to Geiφ ∗x. The

response in the system will depend on the amplitude G and phase φ that multiplies the input

signal of the displacement of the harmonic oscillator. Rewriting Newton’s equation with the

new feedback gain term and dampening should give F = ma = −kx+Geiφx. Solving the force

equation with an ansatz of x = Aeiωt, Newton’s equation becomes −mω2A = −kA + GeiφA.

Solving for the frequency of the system, ω =
√

k
m −

G
me

iφ. Since the natural frequency (ω0)

of the harmonic oscillator is know, it can be factored out such that ω = ω0

√
1− γeiφ, where

γ = G
k . The frequency shows that the feedback loop multiplies the natural frequency of the

harmonic oscillator by some scalar relative to the complex frequency of the system. Therefore,

the phase that the input signal gets multiplied by determines how the feedback loop affects the

system, as shown in figure 1.3. Controlling the γ parameter will amplify the effects of the phase

on the system.
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Figure 1.3: Image of the physical effects on harmonic oscillator from the feedback loop due to the phase.

Using the feedback loop at a φ of π
2

or 3π
2

will implement a maximum loss or a maximum gain into the system,

respectively. Other phases will implement loss and gain too, but they will also affect the stiffness of the spring

by changing the spring constant. The γ parameter amplifies these effects on the system.

Figure 1.3, demonstrates the power of the feedback loop on a harmonic oscillator. The

phase of the feedback can apply a loss or gain of energy proportional to γ. It can also modify the

spring constant k by either stiffening it or softening the spring. The loss and gain exponentially

decays or grows in the system until a limit is reached by the oscillator or the feedback module.

A similar feedback loop will is constructed and analyzed to control a magnetic oscillator.

1.4 Computational Research

The gain-loss (γ) parameter can be implemented computationally by adding or subtract-

ing energy from equations of motion of the dipoles (shown in chapter two). The γ parameter

describes the equal or unequal strength of the gain and loss on the dipoles. The magnitude

of the γ parameter determines the nature of unique behaviors observed in the system. The

equations of motion for the two-dipole system, which are first-order differential equations, can

be solved using initial conditions and an approximation method such as the Euler method or the

fourth-order Runge Kutta method implemented via a fast compiled program such as C. The (γ)

parameter can equally drive/dampen the dipoles or unequally drive/dampen them, giving us the
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ability to simulate, explore, analyze the dynamical behavior that arises from various conditions.

[6]

Analytically identifying the limitations of the equations of motion provides us with the

parameter ranges to explore. Using the parameter ranges and looping through all possible

initial conditions for every gamma value will produce a complete numerical solution for the

dipoles. Additionally, the program can estimate the boundary between the symmetric and

chaotic motions of the system. Graphically analyzing the numerical solutions of the differential

equations demonstrated the four-dimensional nature of the systems exhibits. The mapping of

the boundary of symmetrical and chaotic motion is also graphically depicted. To further analyze

the system, I used varied amplitude conditions for one dipole and forced cyclical behaviors to

arise in the phase space by setting the other initial conditions based on the first dipole angle and

a fixed gamma value. Graphically under these conditions, the relationship between the initial

starting angles and the angular frequency ω resulted in bifurcations appearing. In section 2.8,

there is further analysis of the boundary graph, phase space graphs, bifurcations graphs.

1.5 Experimental Research

Experimentally, gain and loss of energy can be implemented onto the dipoles physically

via feedback loops. The feedback loop uses the resonant frequency of the dipole and coils to

apply controlled magnetic waves such that the dipole maintains and sustains its oscillatory

behavior. The feedback loop can also dampen the oscillatory behavior of a dipole by offsetting

the electromagnetic wave phase. To gain complete control over the phase, amplitude, and

gain/loss parameters, the integration of a raspberry Pi module was required such that the gain

or loss of energy applied to a dipole gets manipulated utilizing a custom-designed python code.

However, using a conductor such as copper or aluminum is another method of dampening the

oscillatory response. A sold piece of a conductor, when positioned near an oscillating dipole, can

induce eddy currents. The eddy currents essentially act as a magnetic drag since they produced

a magnetic field equal and opposite to the dipoles. The eddy current drag can be controlled by

positioning and orienting the conductor near the dipole such that the dampening force applied

is related to some geometrical relationship correlating with the placement of the conductor. The

geometric relationships control the amount of energy dissipated from the dipole. Hypothetically,

once controllable gain and loss get applied to the two dipoles, we can experimentally confirm



the analytical and simulated results of the system. However, the experimental model would

be a Pseudo-PT-Symmetric two dipole system since the equations of motion changed after

integrating the coils and the raspberry pi module. Nonetheless, such a system can provide

crucial information about possible novel applications of PT-symmetry on magnetic apparatuses.

Ultimately, we were not able to develop the Pseudo-PT-symmetric two-dipole model. Still, we

thoroughly explored the various mechanism of applying gain and loss on a rotating dipole and

laid the foundation for such a system to be built. [7]



Chapter 2
Two Dipole System

2.1 Overview

In our study, we investigate the behavior of two coupled magnetic dipoles. The dipoles can

spin freely with no outside influences such as gravity or the Earth’s magnetic field. The equations

of motion of the system are differential equations that predict how the dipoles change with time

by utilizing initial conditions. They describe the dynamics of the two dipoles mathematically

by using θ1 and θ2 to distinguish each of their positions relative to one another while ω1 and

ω2 describe their angular spins. In the system we are studying, the two dipoles are modeled

by two magnets. The magnets can be coupled to one another through their magnetic fields. If

one dipole changes it’s position the second dipole can respond to that change accordingly. The

reason the second dipole responds is due to the magnetic fields of the first dipole changing at the

same time it’s position is changed. The changing magnetic filed induces a the second magnetic

dipole to move. The induced motion due to coupling between the two magnets can be easily

shown experimentally. First, hang two magnets with strings near each other, but not to close so

they do not snap together. The dipoles should be stationary at this point and have no motion

at all. Now if you perturb one of the dipoles the second one will also move, which demonstrates

the concept of magnetic coupling between two magnetic objects. The coupling strength between

the two dipoles is dependant on the distance of separation between them. The two magnetic

dipole system is the simplest model that can be used to apply PT-symmetry. Adding more

10
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dipoles to the system complicates it and may break symmetries which would lead to difficulties

in analytical and computational analysis. Thus, for the remainder of the this thesis we will be

focusing on the two dipole system. Figure 2.1 shows a 2D view of the dipoles on a coordinate

system.

Figure 2.1: The image above is a 2D representation of a two-dipole system. The two dipoles are only allowed

to rotate in the XY plane. The rotation causes an angle to be formed with respect to the x-axis for each dipole.

Applying an external force to cause the dipole to rotate applies a perpendicular velocity, which over time changes

the angle representing the dipole’s position with respect to the x-axis. The change in the angle over the change

in time gives each dipole an angular velocity. Since we are working with magnetic dipoles, they are coupled to

one another by their magnetic fields and the separation distance represents the strength of the coupling.

Upon finding the equations of motion, a gain/loss parameter is integrated into the system.

Adding an arbitrary γ value multiplied by the angular velocity of the first dipole, ω1, introduces a

gain parameter onto the dipole. A loss of energy is introduced to the second dipole by subtracting

an arbitrary γ value multiplied by the angular velocity of the dipole ω2. Below the equations of

motion describing the PT-symmetric two dipole system with the gain and loss implemented are

shown in section 2.3. Using the equations of motion trajectories of the system can be simulated

using initial conditions. Examining the system dynamics under various γ values could provide

insight into the effects of gain and loss on the system. The trajectories will produce a list of

both angles and angular acceleration, which are graphically analyzed. Further exploring unique

trajectories or initial conditions of the system can lead to potential novel applications.
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2.2 Setup

Either Lagrangian or Newtonian mechanics need to be used to find the differential equa-

tions of motion. Using Lagrangian mechanics requires determining the potential and kinetic

energy of the system. Newtonian Mechanics requires calculating the forces on the system. Once

the equations for the energies or forces are identified, we can figure out the two dipole systems’

equations of motion. The Newtonian route is shown above in section 1.2 using a simple har-

monic oscillator. If we take the Lagrangian path, then L = T - V. In this equation, L is the

Lagrangian, T is the kinetic energy, and V is the potential energy. The Lagrangian equation is

very similar to the Hamiltonian equation, which is H = T + V, where T + V is the total energy

in the system. However, using the Lagrangian will enable us to obtain the two dipole equations

of motion; if we utilize the Euler - Lagrange equation shown in equation 2.1. [9]

d

dt
(
∂L
∂q̇

) =
∂L
∂q

(2.1)

Taking the Lagrangian for a specific system and plugging it into the Euler - Lagrange

equation, we will find the equation of motion for our system. The Euler - Lagrange equation is

consistent with Newtonian classical Mechanics. However, using Newtonian Mechanics requires

you to identify all the forces acting in the system. Using the Lagrangian method for a simple

harmonic oscillator is not ideal since it only depends on linear forces. It is much easier to

use Newtonian Mechanics in that situation, but the Lagrangian will essentially give you the

same output; the motion of a harmonic oscillator system is dependant on Hooke’s Law (-kx).

When dealing with more complex systems, Lagrangian Mechanics is much more practical, in

the sense that we can derive the equations of motion for the system just by considering the

energies without considering the numerous forces the system may have in multiple dimensions.

In the two dipole system, motion is happening in the XY plane, so we have to consider forces

in multiple coordinates. The Euler-Lagrange equation can give us equations of motion for the

multiple coordinate systems, so we will end up with an equation for the x and y-direction.

However, switching to polar coordinates to represent the position of the dipoles can simplify

things further, as shown in section 2.3. [9]
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2.3 Equations of Motion

Due to the complexity of our system we need to take the Lagrangian Mechanics route.

First we need to identify the potential and kinetic energy for the two dipoles to get L = T -

V. Using figure 2.1 as a reference we can see that the system will essentially be a dipole dipole

interaction. The potential energy of one dipole in a background magnetic field is going to be

U(θ) = −m · B = −mBcos(θ). The potential energy of the dipole is dependant on the relative

orientation of the dipole with respect to the background field indicated by the angle θ. Now

introducing a second dipole into the system the potential energy will change into the potential

energy for a dipole-dipole interaction. The potential energy of two dipoles irregardless of the

type of dipole, electric or magnetic, is shown in equation 2.2. [7]

U =
µ0

4πr3
( ~m1 · ~m2 − 3( ~m1 · r̂)( ~m2 · r̂)) (2.2)

For the potential energy, m1 and m2 are the two magnetic dipole moments in the system.

The two magnetic dipole moments are related to each other by the distance they are separated

from one another. In a background magnetic field the dipole’s would align themselves along the

x-axis once they are at rest. The separation distance determines the strength of the coupling in

the system as mentioned in section 2.1. The position of the two dipoles care determined by their

individual angles created relative to the x-axis. Expanding out the dot products in equation

2.2 will reveal how the angles determine the potential energy of the dipoles. Evaluating the

dot products in equation 2.2 we get that the potential energy for the two electric dipole system

should be represented by equation 2.3. [7]

U(θ1, θ2) =
m1m2µ0

4πr3
(cos(θ1 − θ2)− 3cos(θ1)cos(θ2) (2.3)

Now we need to determine the kinetic energy of the two dipoles. The dipoles move

in the X-Y plane, and the simple motion can be written as the torque of the system. The

definition of the rotational torque is the product of the rotational mass (I = Inertia) and the

angular acceleration (Change in velocity over time = dω
dt ). Now we can identify the torque of

the magnetic dipoles and equate it to be equal to the I ∗ dωdt . However, since we know that the

dipoles rotate, they must have rotational kinetic energy, which can be derived from the work of

the dipoles; Work = τ ∗ θ. Going back to the Lagrangian we need to account for the rotational
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kinetic energy of each dipole. To do so we need to us Erotational = 1
2Iω

2 for both dipoles. Now

that the potential energy and the kinetic energy of the two magnetic dipole system has been

identified we can write the entire Lagrangian out as shown in equation 2.4. [9]

L =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

m1m2µ0

4πr3
(−cos(θ1 − θ2) + 3cos(θ1)cos(θ2)) (2.4)

In equation 2.4 the negative sign for the potential was distributed to the two angular

terms. Now that we have the Lagrangian equation, we can extrapolate the four equations of

motion for the two dipole system using the Euler - Lagrange equation shown in equation 2.1.

Due to the two angles in the system, we will have two separate Euler - Lagrange equations, one

for the θ1 dependence and another for the θ2 dependence, which will result in four equations of

motion as shown below. [7,9]

d

dt

∂L
∂θ̇1

=
d

dt
(Iθ̇1) = M1r

2θ̈1 (2.5)

d

dt

∂L
∂θ̇2

=
d

dt
(Iθ̇2) = M2r

2θ̈2 (2.6)

∂L
∂θ1

=
m1m2µ0

4πr3
(sin(θ1 − θ2)− 3sin(θ1)cos(θ2)) (2.7)

∂L
∂θ2

=
m1m2µ0

4πr3
(−sin(θ1 − θ2)− 3cos(θ1)sin(θ2)) (2.8)

Using the Euler-Lagrange equation requires taking derivatives with respect to angles and

time for each term in L. When evaluating the derivatives accounting for every negative signs is

important or else the equations of motion will be incorrect. Also, the inertia can be expanded to

I = Mr2 if we consider the dipoles to be point masses, where M is the mass of each individual

dipole and r is the distance from the axis of rotation. Now that we have all the terms for both

sides of the Lagrangian for each dipole evaluated, we can equate equation 2.6 to 2.8 and equation

2.5 to 2.7. When equating the equations to each other we end up the two equations below. The

equations show how one dipole will respond due to a change in the other dipole’s angle over

time and vice versa. [9]
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M1r
2 d

2θ1

dt2
=
m1m2µ0

4πr3
(sin(θ1 − θ2)− 3sin(θ1)cos(θ2)) (2.9)

M2r
2 d

2θ2

dt2
=
m1m2µ0

4πr3
(−sin(θ1 − θ2)− 3cos(θ1)sin(θ2)) (2.10)

2.4 Nondimensionalization

From the equations of motions determined in equations 2.9 and 2.10, we can now scale

away the physical dimensions. This allows us to study just the interactions of the dipoles without

any external factors. To nondimensionalize the equations we can define the time scale such that

t = τ · t0. Where both t and τ are variable time scales but t0 is a constant that is comprised

of all the constants in the equations of motion. Plugging in the new time scale for both the

derivatives results in equations 2.11 and 2.12.

M1r
2 d2θ1

d(τ · t0)2
=
m1m2µ0

4πr3
(sin(θ1 − θ2)− 3sin(θ1)cos(θ2)) (2.11)

M2r
2 d2θ2

d(τ · t0)2
=
m1m2

4πr3
(−sin(θ1 − θ2)− 3cos(θ1)sin(θ2)) (2.12)

Now we can rearrange the equations of motion in such a way that all the constants are

grouped together and can be cancelled by setting the time scale of t0 as shown below.

d2θ1

dτ2
=
m1m2µ0t

2
0

4πr3M1r2
(sin(θ1 − θ2)− 3sin(θ1)cos(θ2)) (2.13)

d2θ2

dτ2
=
m1m2µ0t

2
0

4πr3M2r2
(−sin(θ1 − θ2)− 3cos(θ1)sin(θ2)) (2.14)

For equation 2.13 and 2.14 we see that almost all the terms are equivalent except that

some have a subscript 1 or 2 distinguishing between the two dipoles. However, if we essentially

use the same magnetic dipoles with the same mass and dipole moment it simplifies the equations

since m1 = m2. Doing so simplifies the equations of motion constants so the two dipoles are

purely distinguishable by the angles θ1 and θ2. Additionally, using the same magnetic dipoles
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enables us to set t0 equal to the square root of the reciprocal of the constants. Thus, using

t0 =
√

4πr3Mr2

m2 simplifies the constants to just one. Now the nondimensionalized equations of

motion will be:

d2θ1

dτ2
= (sin(θ1 − θ2)− 3sin(θ1)cos(θ2)) (2.15)

d2θ2

dτ2
= (−sin(θ1 − θ2)− 3cos(θ1)sin(θ2)) (2.16)

To simplify the equations of motion further we can use the trigonometric angle difference

identity sin(θ1 − θ2) = sin(θ1)cos(θ2) − sin(θ2)cos(θ1). Following the negative signs carefully

for each equation of motion and applying the trig identity we get the final form of the nondi-

mensionalized equation of motion shown below.

d2θ1

dτ2
= (−sin(θ2)cos(θ1)− 2sin(θ1)cos(θ2)) (2.17)

d2θ2

dτ2
= (−sin(θ1)cos(θ2)− 2cos(θ1)sin(θ2)) (2.18)

The equations are now nondimensionalized to just polar coordinates and the motion of

the two dipoles depend solely on the angles. The second order differential equations in 2.17

and 2.18 can be turned into first order differential equations. Since, we know that for a simple

pendulum, the angular velocity ω = dθ
dt . So the second derivative with respect to the angle

should just be the first derivative of the angular velocity; d2θ
dt2 = dω

dt . Which is how the four

equations below were derived. Once we rewrite the equations we can implement gain an loss by

adding and subtracting γ · ω.

dθ1

dt
= ω1, (2.19)

dθ2

dt
= ω2, (2.20)

dω1

dt
= −sin(θ2)cos(θ1)− 2sin(θ1)cos(θ2)− γ · ω1 (2.21)
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dω2

dt
= −sin(θ1)cos(θ2)− 2sin(θ2)cos(θ1) + γ · ω2 (2.22)

Using these equations of motion we can simulate the system in a computer program to

obtain information about the behaviour of the dipoles at various starting initial conditions for

θ1, θ2, ω1, and ω2. For each starting initial condition, different values of the γ parameter will

change the system dynamics. We will like to explore every possible value for γ applied to both

dipoles with an equal weight or unequal weight to identify any configurations of the system that

may have novel applications.

2.5 Eigenmode Analysis

Before running simulations blindly we would like to analytically analyze the system for

it’s normal modes. Using the nondimensionalized equations of motion and the small angle

approximations of sin(x) ≈ x and cos(x) ≈ 1, the characteristic eigen frequencies of the system

can be determined. Applying the small angle approximation we should get:

dω1

dt
= −2θ1 − θ2 + γω1 (2.23)

dω2

dt
= −2θ2 − θ1 − γω2 (2.24)

The angles and angular velocity can be written in terms of an initial amplitude and an

exponential phase factor. Since θ1, θ2, ω1, and ω2 are proportional to eiΩt the equations of

motion can be simplified further to find the characteristic eigen frequencies (Ω1 and Ω2) of the

two dipoles. Since we know dθ
dt = ω we can plug in θ = θeiΩt. Taking the derivative we can

see that ω = dθ
dt = iΩθ, which means that ω1 = iΩθ1 and ω2 = iΩθ2. Similarly, we can write

ω = ωeiΩt now taking the derivative we see that dω
dt = iΩω, which means that dω1

dt = iΩω1 and

dω2

dt = iΩω2. These terms can be plugged into equations 2.23 and 2.24 to simplify the equation

of motion as shown below.

iΩω1 = −2θ1 − θ2 + γω1 (2.25)
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iΩω2 = −2θ2 − θ1 − γω2 (2.26)

Now plugging in values determined for ω1 and ω2 into 2.25 and 2.26 turns the equations

into a linear eigenvalue problem as shown below.

−Ω2θ1 = −2θ1 − θ2 + iγΩθ1 (2.27)

−Ω2θ2 = −2θ2 − θ1 − iγΩθ2 (2.28)

Due to the linear nature of the system at small angles, equation 2.27 and 2.28 can be

written as the characteristic eigen matrix as shown in equation 2.29.

Ω2 − 2 + iγΩ −1

−1 Ω2 − 2− iγΩ

θ1

θ2

 = 0 (2.29)

Solving the determinant of the 2 by 2 matrix, than setting it equal to zero, and solving

for the roots of Ω will produce the characteristic eigen frequencies for the two dipole system.

The determinant equation is shown below in equation 2.30.

Ω4 − 4Ω2 + γ2Ω2 + 3 = 0 (2.30)

The determinant can be solved by grouping the same power polynomials, doing a u-

substitution with u = Ω2, than solving for u with the quadratic formula, and finally back

substituting to find Ω. Solving for Ω ultimately generates four characteristic frequencies of the

system. The four solutions are shown below.

√
−γ2 + 4 +

√
γ4 − 8γ2 + 4

2
(2.31)

−

√
−γ2 + 4 +

√
γ4 − 8γ2 + 4

2
(2.32)
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√
−γ2 + 4−

√
γ4 − 8γ2 + 4

2
(2.33)

−

√
−γ2 + 4−

√
γ4 − 8γ2 + 4

2
(2.34)

The normal characteristic eigen frequencies occur when there is no gain or loss, thus we

can derive them by setting γ = 0 for the four equations above. Doing so gives us the result of

±
√

3 for equation 2.31 and 2.32 when γ = 0 as well as ±
√

1 or equation 2.33 and 2.34 when

γ = 0. Thus, the normal characteristic eigen frequencies for the two dipole system when there

is no gain or loss are ±
√

3 and ±
√

1. The frequencies correspond a particular motion of the two

dipoles. The lower frequencies represent the motion of the dipoles when they move synchronously

as shown in figure 2.1. In the figure both the dipoles are moving in the same angular direction

such that the arrows point parallel to one another. The higher frequency represent the motion

of the dipoles when they move asynchronously. In terms of the figure it is when the dipoles

have the opposite angular direction such that the arrows point perpendicularly to each other.

All other motion of the two dipoles are in-between the low frequency and high frequency modes

of the system. The analytical analysis of the two dipole system, shows that the motion of the

two dipoles are only dependant on the angles and the angular velocity. There are no other

parameters to consider for the system since they will not affect the underlying frequencies in

the linear regime. However, our linear eigen frequencies do include a γ parameter, which is the

addition or subtraction of energy from each dipole. Thus, γ values can change the oscillatory

dynamics of the system giving us control over the frequency of oscillation of each dipole.

2.6 PT-Boundary

Since we have identified the determinant equation for the linear eigen value problem of

the two dipole system with the gain/loss parameter, we can find the γCritical and γPT values.

γCritical and γPT determine the boundary of the γ values allowed in the system before the

system enters the broken phase region. The γPT is the specified boundary of the gain-loss

term. Any γ values used in the system that are above γPT will result in a transition to the

broken phase region of the system leading to symmetry breaking and chaos in the system. While

γCritical is spontaneous PT-symmetry breaking, which is the so called “exceptional point”, where
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the system transitions to a new phase associated with complex eigenvalues. To determine the

γCritical and γPT we can use the equation 2.32 obtained from. [15]

Ω =
±
√
γ2
Critical − γ2 ±

√
γ2
PT − γ2

2
√

1
(2.35)

Using this equation we can solve for γPT and γCritical by equating one of the four char-

acteristic eigen equations incorporating γ in equations 2.31 - 2.34. Using the eigenfrequency in

equation 2.31 we obtain the equality in equation 2.36.

√
−γ2 + 4 +

√
γ4 − 8γ2 + 4

2
=
±
√
γ2
Critical − γ2 ±

√
γ2
PT − γ2

2
(2.36)

Evaluating equation 2.36 at γ = 0 we can derive γCritical and γPT . However, doing

the same analysis with all four eigen frequency equations we will get the general result that
√

2± 1 = γCritical±γPT
2 . The values of γCritical and γPT that satisfy the equation are γCritical =√

4 + 2
√

3 =
√

3 + 1 and γPT =
√

4− 2
√

3 =
√

3 − 1. Based on the results any value of γ

greater than γPT =
√

4− 2
√

3 ≈ 0.7320508076 will break the symmetry in the system. The PT

symmetry breaking point can be verified by simulating the equations of motion and incriminating

the γ values until the symmetrical motion of the dipoles break. The specified γ value should

be around 0.7320508076. Graphing the real and imaginary parts of the eigen frequencies as a

function of γ we can obtain the PT-symmetry graph for the two dipole system with the γPT

and γCritical points labeled as shown in figure 2.2.
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Figure 2.2: Graph of the Real and Imaginary solutions to the eigenfrequencies as a function of γ with the

γPT and γCritical points labeled. The γPT and γCritical points are fixed for a two dipole system since there

is no coupling parameter. All parameters in the system were scaled away, and the underlying physics of this

system depends on the initial starting conditions. The magnetic fields of the dipoles determine the coupling,

and the distance affects the strength of that coupling. In other coupled systems, like two pendulums attached

by a spring, the coupling gets adjusted by changing the spring constant K. In the two dipole system, there is no

analogous spring constant to be changed, so γPT and γCritical are always the same.

2.7 Simulations

To simulate the differential equations quickly, we used a C compiler. A fourth-order

Runge Kutta method was used in the compiler to solve the first-order differential equations of

motion above. Once the differential equations are solved correctly, the program can be initiated

with starting conditions and looped until a specified time. After the program finishes running

through all the variables, we can analyze the results by graphing the outputs for both the angles

and angular velocity. Thus, we can produce a θ1 vs ω1 and θ2 vs ω2 phase plot as shown in

figure 2.3. [6]
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Figure 2.3: Example of the phase plot of the dipole motion. Produced by simulating the equations of motion

with initial conditions for θ1, ω1, θ2, ω2, and γ and graphing its angle and angular velocity. The simulation uses

a 4th order Runge Kutta that approximates the solutions to the differential equations. The simulation uses the

current initial conditions and calculates the next values using the average of four increments. The smaller the

increment size, the more accurate the results are, but the longer the program takes for a given range. Over time

the error in the approximation increases, which is why we see that the trajectory in phase space has an error

associated with it. The error, at the end of one cycle, can be fixed using linear interpolation.

We want to simulate the system to understand the precise initial conditions that allow

the magnetic dipoles to come back to the same starting position, which produces a cyclical

behavior. The phase plot starts at one location and comes back to that same location regardless

of the duration of the simulation or initial conditions. We will consider a closed phase plot

as symmetrical behavior, and an open phase plot indicates non-cyclical symmetry-breaking

behavior for the two dipoles due to chaos or bifurcations. Over time, the system is slowly

deviating away from symmetrical behavior. At small amplitudes, the solutions to the equations

of motion that produce a cyclical behavior are linear solutions, which enable us to use a linear

interpolation method at the beginning and end of one cycle. To restrict the simulation to find

cyclical solutions, we can derive a formula relating θ2 and ω2 to the initial condition of θ1, ω1,

and γ.
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2.7.1 Linear Interpolation

We can use the linear equations in the matrix equation 2.29 and solve for θ2 in terms of θ1.

Using the terms defined above and simplifying we ultimately obtain the relationship θ2 = (Ω2−

2+iΩγ)θ1 and taking the real components of the equation we can see that θ2 = (Ω2−2)θ1.To find

the restriction for ω2 we can take the derivative of θ2 which will result in ω2 = (Ω2−2+iΩγ)dθ1dt .

Since we defined the derivative d θ1dt being equal to iΩθ1 above, we can multiply the whole term

by iΩθ1 and take the real components to apply in the simulation. The first two terms will

be disregarded since they have an imaginary component, while in the last term, the imaginary

component will become a negative number leaving us with ω2 = −γΩ2θ1. We take the real

component of the equation since the simulation is only exploring the real eigenfrequencies of the

system as shown in 2.2. It is equally valid to take the imaginary component if the simulation is

exploring the imaginary eigenfrequencies by starting with imaginary initial conditions to produce

imaginary phase plots. [5]

Thus, the restrictions required in the simulation are represented by equations 2.37 and

2.38. In the equations, x0 is used in place of the initial θ1 value to limit the assignment errors

when executing the simulation. One of the eigenfrequencies got plugged in for Ω2, which enables

us to solve for ω2 and θ2 using the initial conditions assigned to γ and θ1 in the simulation.

ω2 = (γ ∗ (
γ2 − 4±

√
(γ4 − 8 ∗ γ2 + 4)

2
) ∗ x0) (2.37)

θ2 = (−(
γ2 ±

√
(γ4 − 8 ∗ γ2 + 4)

2
) ∗ x0) (2.38)

Using these equations with any value of θ1 and γ the simulation will provide a cyclical

solution that always has one of the eigenfrequency of the linear system. However, restricting

the θ2 and ω2 values will only work for small values of γ as shown in figure 2.4.
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Figure 2.4: The image shows how restricting the values of ω2 and θ2 have on the system. Both graphs were

plotted using the RK4 function of the simulation at a γ = 0.3 The starting conditions for the system were

θ1 = 0.5 and a time step dt = 0.1. The first phase plot shows the eigenfrequency restriction. The second phase

plot shows no restriction present. For the second plot the user has to input values for θ2 and ω2. The values

plugged in were 0 for both. As you can see the eigen frequencies restrict the phase plots to cyclical behavior but

over time at larger γ values the cycles grow bigger. This is why the interpolation is done at the end to prevent

the cycle from expanding and only giving cyclical graphs as shown in figure 2.5.

Thus, implementing this method with linear interpolation will fix the error shown in figure

2.3, which means that regardless of the number of phase plot cycles we go through, the program

will output closed cyclical plots, as shown in figure 2.4 with an eigenfrequency. In the index, the

C code shows how the interpolation was done. Using the cycleprint() function, which produces

figure 2.3 since it is not the end points interpolating. Using the Excatcycle() function gives

figure 2.5. The Excatcycle() does a weighted average of two points to the left and right of the

starting position to make a new point in-between. The program forces the ends to be come

back on itself such that over time at any γ value, we will always have one cyclical phase plots.

The cyclical phase plots will always have a linear eigenfrequency associated with it due to the

restrictions on ω2 and θ2.
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Figure 2.5: Phase plot example with the linear interpolation method applied in the program with no errors in

the cyclical behavior. The trajectories return to the original starting position, which results in perfect symmetrical

behavior in the system. Pushing the initial conditions for θ1 and γ until the symmetric phase plots break will

produce a graph of the boundary of the symmetry and chaos.

With the linear interpolation complete, the system can be explored at various initial θ1

and γ values and analyzed by observing variations in the phase plot graphs produced. Figure 2.6

shows an example of a unique behavior seen in the phase plots due to the symmetry restriction

imposed above by equations 2.37, 2.38, and the linear interpolation method.

Figure 2.6: A phase graph plotted at γ = 0.5 showed a kink in one region. The unique phase plots arose after

implementing the symmetry restrictions. The point where the phase plot kink occurs seems to be cusp. A cusp

is not differentiable so the simulation may be breaking symmetry at those values of θ1 and ω1.
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The phase plot graph in figure 2.6 shows a closed cycle with a kinked behavior occurring

in one region. The behavior persists in the program for various initial conditions. The kinked

behavior seems to break symmetry due to the phase plot potentially having a discontinuous

hole at the kink position. If this is the case, the symmetrical motion of the dipoles breaks at

the values of ω1 and θ1. To further analyze the kinked locations on the phase plots, we tried to

graph them in three dimensions as shown in figure 2.7.

Figure 2.7: The same numerical results from the simulation as figure 2.5, but graphed in 3D. The results

showed that the phase plot, viewed from another angle in three dimensions, have cycles that are closed loops.

This indicated that the symmetry restrictions implemented in the simulation forced the cycles to go out of the

page or into the page. Thus, the 2D phase plots from the program are only showing one slice of the 3D solution

of the 4D problem we are investigating.

Graphing ω1, θ1, and the iteration step showed that the cycles are coming out of the page

or into the page. Ultimately, indicating that the symmetrical restrictions imposed on θ2 and ω2

forces the phase plots to become three-dimensional cycles to keep the symmetry behavior of the

two dipoles in the system.

2.7.2 PT Boundary Graph and Amoeba

The program can identify the γPT point by iterating through γ values from 0 to γPT

and checking all the inputs of θ1 that will enable symmetry at that γ value before symmetrical

behavior breaks. Doing this nested for loop is computationally expensive since the iteration

steps for variables can cause the simulation to go through millions of initial conditions that will
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get plugged into the differential equations with the fourth-order Runge Kutta. To minimize the

time required for the program to execute, we embedded a downhill simplex algorithm (amoeba

method). The amoeba method is a numerical method used to find the local minimum or maxi-

mum of a function in multidimensional space. The amoeba can be implemented in the program

to find the initial conditions that produces the smallest error in the phase plot. The program can

now minimize the time it takes when iterating through multiple variables. With the downhill

simplex algorithm implemented along with the linear interpolation, with the initial values of θ1

and γ, the program can find θ2, ω2, and the smallest error possible in the fastest time possible.

Now iterating through many initial conditions for θ1 and γ with a nested for loop, we will create

the graph in figure 2.8 showing the boundary between symmetry and chaos for the two dipole

system. The iteration and full code for producing the boundary graphs are shown in appendix

B. [5,6,10]

Figure 2.8: The symmetry chaos boundary for the two-dipole system. The graph made by iterating γ and

θ1 values. The maximum θ1 value was π
2

and the maximum γ was γPT . The line connects the largest θ1(X0)

points for each successive γ value that the program could not produce a symmetrical phase plot. Thus, for all

θ1(X0) above the line, the system will be in a chaotic state. For all θ1(X0) below the line, the system will be

in symmetric motion. In the middle of the graph, we can see regions of bifurcation for the boundary, and some

other parts of the graph exhibit well-like and constant behavior.

Due to the 360-degree restriction to the θ1 (X0) parameter, the boundary will give sym-

metrical results for the four quadrants of the unit circle. Thus, in the first attempt at producing

the boundary graph, we restricted θ1 iterations between 0 and π/2. The γ restriction was from

0 to about 0.8. As we can see in figure 2.8, the gamma parameter halted the simulation once it
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reached a value between 7 and 8. That value was either γPT ≈ 0.7320 or slightly bigger than

that. In figure 2.7, we can see what the maximum θ1 value is at each γ value. Any value above

that maximum will push the system in chaotic behavior, while any value less than that would

result in the system being in a symmetrical state of motion. However, we can see that for the

first few γ values and some in the middle of the graph have the maximum θ1 being at π/2, so it

is not clear if a θ1 value greater than π/2 will result in symmetrical or chaotic behavior. Thus,

rerunning the simulation enabled us to get a complete picture of the boundary. However, this

time the θ1 (X0) parameter had a range of 0 to π. Figure 2.9 shows the expanded boundary

condition in addition to the same γ value the program terminates; γPT .

Figure 2.9: Figure 2.7 shows the expanded symmetry-chaos boundary for the two-dipole system. The graph

was produced in the same way as figure 2.6 by iterating gamma and θ1 values. However, this time the maximum

θ1(X0) point the program went to was π. Expanding the graph made the boundary look linear, but the bifurcation

and the well-like regions were still present.

With the expanded boundary graph, the first few initial γ values have a maximum value

for X0 greater than π/2. The expanded boundary graph also shows the bifurcations behavior

in figure 2.4 seems to be still present but less noticeable after expanding the X0 range. We

have confirmed that the γPT ≈ 0.7320508076 is the value at which the system symmetry breaks

and the initial conditions that enable symmetry. We can analyze specific configurations in the

system to explore novel applications of the two dipole system.
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2.8 Graphical Analysis

The simulation is now completed and can be used to further understand specific con-

ditions in the two dipole system. Some unique phase plots obtained from the simulation are

shown in figure 2.10. The images show how different the two dipole motion can be once symme-

try restrictions are imposed in the simulation. The last image shows the phase plot diagram of

the two dipole systems when the simulation is pushed into the chaotic boundary region.

Figure 2.10: The above images are different phase plots from the simulation. Starting the simulation at various

initial conditions produced the unique phase plots above. The bottom right graph shows how the symmetry in the

system breaks at γ values bigger than γPT . A similar response in the system happens with higher initial values

of θ1(X0). The increased θ1(X0) values cause more errors in the approximation, which the downhill simplex

method can not resolve. Leading to the program halting and deciding there are no more values of θ1(X0) at this

specific γ which will produce symmetric phase plots.

Based on the images, it seems like the symmetry restriction on θ2 and ω2 makes the phase

plots sensitive to the initial conditions the program is started at. To explore the behaviour of

θ2 and ω2 we can gradually change the θ1(X0) value at a specified γ value. This procedure

will enable us to look at what is gradually occurring in parameter/phase space by graphing the

θ1(X0) against both θ2 and ω2. In order to explore how things are changing in parameter space

I ran the simulation with an initial θ1(X0) = 0.1, ω1 = 0, and γ = 0.403 since that is where
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we observed interesting bifurcation behavior occurring in figures 2.8 and 2.9. After running the

program at these starting conditions, I obtained figure 2.11 below.

Figure 2.11: Deviations in parameter space plot. The image shows how θ2 and ω2 change at γ = 0.403 as the

program increments through θ1(X0). Bifurcations in the parameter values are shown at θ1(X0) ≈ 0.9 which is

approximately equal to
√

3/2. The bifurcations indicate that there are two symmetrical solutions, phase plots,

for the system. Slight deviations from the initial starting θ1(X0) value results in the program taking one path

or another. In some instances, the graph of θ2 and ω2 at γ = 0.403 as the program increments through θ1(X0)

instantaneously jumps from one solution to another as seen in the pink line.

The image in figure 2.11 is a composite of various plots of θ2 and ω2 vs θ1(X0). Individ-

ually, the bifurcation behavior was not clearly observable, it is only after combining two graphs

with slight deviations in the initial θ1(X0) value from 0.01 to 0.011. The slight initial condition

difference produced two different trajectories like the light green lines and the red lines. How-

ever, once combined together they reveal the bifurcation point, which is between θ1(X0) of 0.8

and 1. Graphically, the point looks very close to 0.9 but I suspect due to the symmetry restric-

tions imposed onto the simulation with equations 2.34 and 2.35 that θ1(X0) ≈
√

3/2 ≈ 0.866025.

Towards the end of the pink line, we can see that the solution jumps to the trajectory of the out-

side blue line in the graph. This behavior shows that the system can instantly jump to another

solution of the equations of motion behavior that we would like to explore experimentally.

2.9 Summary of Findings

In this chapter, we established the theory behind a two dipole PT-symmetric system we

are investigating and how gain and loss can be implemented onto the dipoles to create a PT-
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symmetric system. We have also demonstrated the derivation of the equations of motion of the

system using Lagrangian mechanics. We demonstrated how the equations of motions can be

nondimensionalized such that the system can be modeled by the angle of the two dipoles. In the

linear regime, the equations of motion can be simplified using the small-angle approximations,

which enables us to use matrix analysis to find the four characteristic eigenfrequencies of the

two dipole system. From this, we were able to extrapolate the normal modes of the system

when there is no γ dependence to be ±
√

3 and ±
√

1. Afterwards using the characteristic

eigenfrequencies and equation 2.35 we were able to solve for the values of γPT =
√

4− 2
√

3 and

γCritical =
√

4 + 2
√

3.

After analytically analyzing the equations of motion for the two dipole system we used

a fourth-order Runge Kutta method and initial conditions for the variables to simulate the

two dipoles. Using the numerical output of the simulation for each variable phase plots of the

position vs angular velocity were constructed. Some initial conditions pushed the system out of

a perfectly closed phase plot indicating those initial conditions will eventually lead the system

into chaotic motion. To impose symmetrical motion on the system through perfect closed phase

plots the end of the cycle was linearly interpolated and the restrictions were imposed onto the

initial values of ω2 and θ2 based on the values the user plugged in for θ1 and γ. The restrictions

for both θ2 and ω2 were derived from the linear eigenfrequencies. Further simulations with

various initial conditions demonstrated new kinked behavior in the phase plots. This behavior

was later found to be a result of looking at a 2D image of the 3D phase plot solution of the 4D

dynamical problem of the PT-symmetric two dipole system.

Pushing the simulation further to uncover the symmetry chaos boundary in the system

required the implementation of a gradient descent algorithm to reduce the error in identifying

symmetrical cycles and increase the speed of the program when iterating through multiple

variables by determining the change in the error during each step enabling the simulation to move

the step direction that reduces the error further ending in a local minimum. Implementing the

gradient descent algorithm improved the speed of the program and enable us to iterate through

every possible θ1(X0) and γ combination for the two dipole system resulting in the boundary

graphs shown in figures 2.8 and 2.9. The figures demonstrated that the analytical derivation of

γPT was correct since the program stopped functioning once the loop iterating through all the

γ values reached γPT ≈
√

4− 2
√

3 ≈ 0.7320508076. Finally, analyzing the boundary diagrams



showed bifurcations behaviors occurring in the simulation leading to further investigation of the

parameter space. This time using a fixed γ value while iterating through θ1(X0) and overlaying

multiple graphs of ω2, θ2 vs θ1(X0) showed more bifurcation behaviours analogous to chaotic

systems. Figure 2.11 shows multiple points of bifurcation in the system as well as solutions to

the system jumping from one symmetrical trajectory to another.

2.9.1 Future Computational Analysis

Our study using a simulation of the PT-symmetric two dipole system has shed light

onto the dynamics of magnetic systems. However, the computational analysis can be pushed

further. For instance, additional studies on the phase diagrams can give insight into more unique

conditions the system can exhibit with potential novel applications. By saving more output text

files of the solutions for various initial conditions and overlaying them will produce the entire

phase space region of solutions for the system. Plotting all the phase space graphs for every

initial condition possible in three dimensions will create the entire three dimensional solution

for the forth dimensional problem of the PT-symmetric two dipole system.

Additionally, further simulation can be done to study additional bifurcational behaviour

in the system liked the ones observed in figure 2.11 at γ = 0.403. More simulations can be done

at various other γ values to see if the bifurcational behaviour in the parameters still persists.

The simulation can be altered to start backwards from the initial conditions given and slowly

approach zero to confirm the bifurcations points are indeed bifurcations in the solutions to the

differential equations and not just artifacts of the simulations. Finally, further investigation

into similar parameter space graphs like figure 2.11 may produced initial conditions where the

system will start jumping through very possible solution and become discontinuous over the

entire parameter range. Such a behaviour would have unique novel applications that would

have to be tested experimentally. I suspect a discontinuous stable system maybe possible at the

boundary regions or near γPT .

Finally, the boundary conditions can be simulated for the maximum possible ranges

for γ and θ1(X0). The full range simulation would make sure that the entire picture for the

boundary conditions would graphically depicted. The graph of the full range simulation can

possibly provide more information on the two dipole system’s dynamics.



Chapter 3
Electronic Feedback Loop - Single Dipole

System

3.1 Overview

Ultimately, the simulations revealed how the two dipole system would behave in an

ideal world, but we would like to understand how the PT-symmetric two dipole system behaves

experimentally. Thus, I began to develop a method of producing an experimental example for

the two dipole system. After a model of the system is constructed, it could be used for verifying

the findings of the analytical and simulated results obtained in chapter 2. In this chapter, we

demonstrate how a feedback loop mechanism can apply rotational gain and loss of energy to a

single magnetic dipole.

However, building an experimental model is easier said than done. The difficulty with

making a prototype of the PT-symmetric system is discovering the best way to implement the

gain and loss of energy. There have been PT-symmetric experiments done where one part of the

system is over-damped compared to another. Subsequently, this means that the other part of the

system is considered to have a gain of energy relative to the first part of the system that has more

loss. Thus, the system is analogous to a PT-symmetric system without dealing with an external

gain of energy. Experimentally, it is easy to work with losses, but the gain is more complicated

33
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to implement. As shown in chapter one, the increase of energy in a simple mass with a spring

system can be implemented with a sensor and drive mechanism through a feedback loop. The

feedback allows greater control over the system input energy and enables phase shifting of the

output wave affecting the motion of the mass on the spring. In our experimental model, we will

not be dealing with two dipoles with losses. We will explore different techniques of applying

rotational gain of energy to a magnetic dipole that freely rotates in the XY plane, similar to

that of the mass on a spring with a positive feedback loop.

3.2 Setup

To represent one dipole in our experiment, we initially used two bar magnets clamped

around a super-thin and durable piece of string. The opposite end of the wiring was attached

to a cork that fit on top of the test tube. This setup allowed the dipole to hang freely inside the

test tube and rotate in the XY plane, as shown in figure 3.1. Before tackling the rotational gain

problem, we’ll have to distinguish the best method of inducing rotational loss on the dipole. The

easiest way that we found that provides complete control over the loss of energy applied was

using a conductor such as aluminum or copper that can induce eddy currents onto the rotating

magnet. An eddy current is an electrical current that is produced in a conductor by a changing

magnetic field. The current, in turn, generates a magnetic field that opposes the changing

magnetic field produced by the dipole. Thus, the conductor and its eddy currents act like a

magnetic dampener. Based on the position and orientation of the conductor, the magnitude

of the opposing magnetic field can be changed, resulting in a controllable method of applying

magnetic oscillatory loss based on the geometrical coordinates of the aluminum conductor in

our experiment. The conductor can induce light dampening on the dipoles oscillations. We

were unable to experimentally get critical dampening or over-dampening on the dipole since

they require the conductor to be close to the magnet resulting in mechanical interference of its

rotation.
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Figure 3.1: The experimental setup to apply gain with a coil (Drive coil) to a bar magnet dipole. The

second coil (pick-up coil) measures the oscillations of the dipole and observes the behavior of the dipole on an

oscilloscope. The oscillations of the dipole are sent from the pick-up coil to an amplifier and then sent back to

the dipole using the drive coil. The dipole at the center of the test tube is two bar magnets clamped together

between a string. Due to this setup, the dipole has a slight tilt due to the Earth’s magnetic field. Another

magnet has to be positioned around the test tube to cancel out the effects on the dipole.

Now that we have a method of tuning the loss on one of the dipoles, we need to develop

a way of applying gain to a second dipole. Electronically, an exponential increase of energy is

achievable using an RLC resonant circuit with a negative resistor. However, we cannot buy the

elements for the RLC circuit, so components have to be made from scratch. The values of the

inductor, capacitor, and resistor have to be analytically or computationally identify. We can

construct the RLC circuit once the values that work best for the two-dipole system are known.

We successfully found the numerical results for each circuit element, but the necessary Q values

of the LC resonance at the experimental frequencies are not achievable. It would take a lot

of time and resources to build the custom components for the circuit at the low frequencies of

our dipole in the experiment. Thus, we had to use another approach. Instead of producing

a tunable physical RLC resonant circuit, we decided to use a feedback loop system similar to

the one shown with the mass on a spring in chapter one but with coils, as shown in figure

3.1. One coil measures the magnetic dipoles oscillations (pick-up), and another one produces

magnetic torque (drive). Using a filtering amplifier to amplify the measured signals of the dipole

from the pick-up and sending it back to the drive coil completes a feedback loop. The loop will

sustain dipole oscillations at its resonant frequency if the phase is chosen correctly in the filtering.

Ultimately, we utilized the feedback loop system to apply gain in the experimental model. Upon

integrating the hypothetical RLC circuit or the feedback loop system, the equations of motion
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of the system change. The characteristic eigenfrequencies have to be analytically re-derived in

sections 3.3 and 3.4.

3.3 +RL Circuit Equations of Motion

Even though the RLC resonant circuit cannot be built and used to apply gain to one

dipole in the experimental model, we can obtain analytical and computational results for one

dipole and the RLC resonant circuit. The analytical results may apply to higher frequency

situations such as NMR since the resonant RLC circuit can work for higher frequencies in the

radio frequency range (20 kHz - 300 GHz). Applying the RLC circuit to the dipole will result in

additional equations of motion depending on the current going through the circuit. First, we can

analyze one inductor coil and a positive resistor (RL circuit) with a dipole. This setup essentially

will act like a magnetic dampener, just like the eddy currents in the conductor. Thus the dipole

near the inductor will experience loss of energy from its angular rotation. To apply gain to the

dipole, we will need to implement a negative resistance in the circuit. However, the negative

resistor cannot be by itself and requires a capacitor to maintain a non-instantaneously growing

voltage proportional to et/(RC). Thus, applying gain to a dipole using a negative resistor requires

us to have a resonant RLC circuit. To understand the new system, we can rederive the equations

of motion for the positive RL circuit, which behaves like a controllable dipole dampener. We

can rederive the equations for the negative RLC circuit that acts as a controllable dipole driver.

The eigenfrequencies of the system will show how the circuits affect the motion of the dipole.

However, since this system is not PT-symmetric, there is no γPT or γCritical points in the system.

Subsequently, solving the one dipole gain problem with the equations of motion and coupling it

to the equations of motion of a second dipole with loss will result in a PT-symmetric problem.

The system is dependant on γ, ω, and the initial angle of the dipole θ. The γ is dependent on

the current, voltage, and 3D position/orientation of the coils, circuit, and conductor. [19]

Implementing a positive RL component to on dipole doesn’t change the θ dependence

of the angular velocity as shown in the equation of motion for the one dipole. However, since

there is no second dipole, the derivative of ω simplifies, and there is no need to distinguish

with subscripts. Furthermore, since the current through the positive RL circuit determines the

loss applied to the dipole, the equation for dω
dt will now need to depend on I*R. Deriving the

equations of motion from the Lagrangian once again can be done. However, we know that the
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dipole will have two differential equations for the θ and ω dependence, while the Rl circuit will

have just one differential equation for the current dependence. We can identify the relationship

between the current and angular velocity to find the differential equations of motion for this

system. We know already that for this system that dθ
dt = ω and for the RL circuit the differential

equation for the current is dI
dt = V (t)−IR

L . The V(t) can be represented by Faraday’s law where

the voltage induced is V (t) = −N ∆B·A
∆t and the B · A is the magnetic flux Φm. The dot

product of B and A would result in V (t) = −NBAcos(θ)
∆t . Since our θ is changing over time in

the system we can take the time derivative of the flux to get V (t) = NBAsin(θ)dθdt . Plugging

into the current differential equation and substituting ω we get dI
dt = NBAsin(θ)ω−IR

L . We can

substitute in the area of the coil, which is πa2 and the magnetic field of the dipole when the

magnetic moment is aligned at the z-axis above the coil; µ0|m|
2πr3 . To obtain the final differential

equation of motion, we need to look into the torque of the dipole in the magnetic field. Thus,

τ = m × Bz = Gα = Gdω
dt . In this equation, G is the inertia of the dipole, m is the magnetic

moment, α is the angular acceleration, which can be written as α = dω
dt , and Bz is the magnetic

field produced by the coil. The cross product of m×Bz should yield −Bzsin(θ), which results

in dω
dt = −Bzsin(θ)

G . The magnetic field, Bz, can be rewritten as µ0NIa
2

2r3 , which gives us the last

equation of motion dω
dt = −µ0NIa

2sin(θ)
2r3G . The three equations of motion for the one dipole and

the positive RL coil are shown below. [7,19]

dθ

dt
= ω (3.1)

dω

dt
=
−µ0NIa

2sin(θ)

2r3G
(3.2)

dI

dt
= −RI

L
+
µ0mNa

2

2r3L
ωsin(θ) (3.3)

Using the small angle approximation for the dipole angle sin(θ) = θ. Now we can nondi-

mensionalize the equations of motion by scaling with the time, which results in the equations

below. Setting t = t̄ ∗ t0 will enable us to once again analyze the system in the linear regime to

find the characteristic eigenfrequencies of the system. Then setting the time scale to t0 = 2r3

µ0Na2

we can simplify the equations of motion to equations 3.4 to 3.6.
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dθ

dt̄
= ωt0 (3.4)

dω

dt̄
= −Isin(θ)

G
(3.5)

dI

dt̄
= −RIt0

L
+
mω

L
sin(θ) (3.6)

To push the system one step further, we can analyze how the dipole behaves with the RL

circuit in a background magnetic field. This situation will model our dipole in an NMR machine

with a coil that can apply gain to if there is a negative resistance. The background magnetic field

can be applied to the equations of motion by understanding how the background field will affect

the dipole. Ultimately, the background field is perpendicular to the system will just affect the

dipole angular velocity by dampening it with a factor of Bcos(θ). This value can be implemented

into equation 3.6. Afterward, doing the matrix and determinant calculations, we can find the

characteristic eigenfrequencies of the one dipole and positive RL coil in a background magnetic

field system.

dω

dt̄
= −Isin(θ)

G
−B0 ∗ cos(θ) (3.7)

Since we now have all the terms for the equations of motion we can pick an orientation

of the dipole to make the calculations easier. We will consider the dipole aligned perpendicular

to the coil axis and parallel to the background magnetic field. This will change the cos(θ) to

sin(θ) and vice versa in the equations of motion enabling the linearization of the system to be

much similar. The final equations of motion based on the new set up are shown below.

dθ

dt̄
= ωt0 (3.8)

dω

dt̄
= −Icos(θ)

G
−B0 ∗ sin(θ) (3.9)

dI

dt̄
= −RIt0

L
+
mω

L
cos(θ) (3.10)
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With the equations of motion, we can create the characteristic matrix and then solve for

the characteristic eigenfrequencies of the system. Before making the matrix we have to use the

small angle approximation for sin(θ) = θ and cos(θ) = 1. For the angle, current, and angular

velocity, we can correlate them to some exponential formula like X = X0e
iΩt. Taking the time

derivative will result in dX
dt = iΩ ∗ X. Using this simplification for the derivatives allows us

to rewrite the equations of motion in the form of a linear eigenvalue problem, as shown in the

matrix below. Finding the determinant of the 3x3 matrix shown below will enable us to solve

the eigenfrequencies. Simplifying using λ = iΩ results in:


λ −t0 0

B0 λ 1
G

0 −mL λ+ Rt0
L



θ

ω

I

 = 0 (3.11)

Solving for the determinant gives us the equation 3.12. In the equation we can simply

terms by equating them to constants like χ = m
GL , κ = Rt0

L , and β = t0B0, which results in the

equation 3.13.

λ2(λ+
Rt0
L

) + λ
m

GL
+ t0B0(λ+

Rt0
L

) = 0 (3.12)

λ2(λ+ κ) + λχ+ β(λ+ κ) = 0 (3.13)

Solving for λ should give us the characteristic eigenfrequencies of the positive RL circuit

with one dipole in a background magnetic field. However, the equation above is a third degree

polynomial and it requires using the cubic formula to solve for the eigenfrequencies of the

equations of motion. We can however use the quadratic equation if we set the background

magnetic field to zero. This would allow us to understand how the dipole behaves with just the

RL coil. Setting B0 = 0 would mean that β = 0, so the last term of the determinant becomes

zero and we get λ3 +λ2κ+λχ = 0 as out new equation. Now factoring out λ the trivial solution

would be λ = 0, but the other solution would be λ =
−κ±
√
κ2−4χ

2 . There will always be three or

less eigenfrequencies for the determinant of this system even when reintroducing the background

field. The background field will shift the solutions to the determinant as shown in the solution

to the cubic formula below. To simplify the long cubic formula I set a1 = (κ
3

27 + κχ
6 −

βκ
2 ),
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a2 = βκ
3 −

κ2

9 , and a3 = κ
3 . Thus, the cubic solution to the eigenfrequencies will become

equation 3.14.

λ =
3

√
a1 +

√
a2

1 + a3
2 +

3

√
a1 −

√
a2

1 + a3
2 − a3 (3.14)

Thus, based on the values of the inductor (L), resistor (R), mass, inertia, and the initial

angle (θ) of the dipole, we will be able to determine the dynamics of the system. Now that we

have successfully modeled the RL coil and analytically understand the behavior of the dipole

in the presence of the coil, we apply gain to the dipole using a negative resistance in the coil

instead. However, the negative resistance cannot be physically by itself and requires that the

circuit have a parallel capacitor present in the system. This turns the circuit into a negative

RLC resonant circuit. The analysis of the circuit is shown in the next section.

3.4 -RLC Resonant Circuit Equations of Motion

A schematic of the circuit in question is shown below in figure 3.2 of the RLC resonant

circuit with the magnetic dipole near the inductor. This entire setup would be surrounded by

a background field. Additionally, due to the integration of a parallel capacitor, there will be

another equation of motion that will be describing the changing voltage. This indicates that for a

one dipole RLC resonant circuit, a 4X4 matrix will be constructed, and solving the determinant

will result in the new characteristic eigenfrequencies for the circuit.
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Figure 3.2: Theoretical design of the RLC circuit with the currents labeled and the magnet positioned near the

inductor so energy can be applied to the dipole from the inductor once there is a negative resistor. The calculated

values of the capacitance, resistance, and inductance were not physically possible. Thus, implementing a feedback

loop was the most ideal method of applying gain to the dipole.

Based on this diagram, we can develop new equations of motion that will describe the

oscillations of the dipole with the circuit. The three equations of motion above will stay the

same, but now there needs to be a voltage differential equation due to the addition of the

capacitor. The current can be modeled through a capacitor as I = C dV
dt . If we use Kirchhoff’s

current law, we can identify the differential equation for voltage since Ic + Ir + Il = 0. Since

there is a constant current flow through the inductor, the voltage is zero, so Il = 0 due to

Il = L didt , however, the current through the resistor is found from Ohm’s law I = V/R. Also,

there is an induced current (Iinduced) in the inductor from the dipole’s magnetic field, which is

the differential equation modeled above for the current. From these relations we obtain that

C dV
dt + V

R + Iinduced = 0. Thus, the four unscaled equations below represent the differential

equations for the one dipole and RLC resonant circuit model. [19]

dθ

dt
= ω (3.15)

dω

dt
= −µ0a

2NIsin(θ)

2r3G
(3.16)
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L
dIinduced

dt
= V − Vinduced (3.17)

C
dV

dt
= −Iinduced −

V

R
(3.18)

The Vinduced in equation 3.17, is the voltage in the inductor produced by the dipoles

magnetic field calculated from the magnetic flux (EMF) in the system as shown in equation 3.2.

The V term in equation 3.18 is just the voltage through the circuit resistor represented by Ohm’s

law once again is V = IR. Representing the differential equations as exponential terms as we

have done before and using the small-angle approximations with the new coordinate system will

produce another linear eigenmode problem for the system. First, we need to nondimensionalize

the equations once again, so the characteristic eigenfrequency solutions are dependant on scaled

versions of the voltage, current, angular acceleration, and the initial position of the dipole.

Expanding the equation’s results in.

dθ

dt
= ω (3.19)

dω

dt
= IA1cos(θ)−B0sin(θ) (3.20)

dIInduced
dt

=
v

L
−A2ωcos(θ) (3.21)

dv

dt
=
−IInduced

C
− v

RC
(3.22)

In the equations above, A1 = µ0a
2N

2r3G and A2 = µ0a
2Nm

2h3 . The linearized version of the

equations of motion are shown below where for a small angle θ cos(θ) is 1 and sin(θ) is θ.

Additionally, using the following definitions u = Iz0, φ = tw0, w0 = A2, and z0 = A1 will

simplify the differential equations further since we can set I = u
z0

and t = φ
w0

. Thus, we obtain

the following linearized equations.

dθ

dφ
=

ω

ω0
(3.23)
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dω

dφ
=

uz0

ω0z0
− B0

ω0
θ (3.24)

du

dφ
=

vz0

ω0L
− ωz0 (3.25)

dv

dφ
= − u

z0ω0C
− v

ω0CR
(3.26)

Now we can simplify the linearized version by grouping constants into new constants. I

will be substituting the following constants below: β = B0, δ = z0
L , α = 1

z0C
, and γ = 1

RC .

dθ

dφ
=

ω

ω0
(3.27)

dω

dφ
=

u

ω0
− βθ

ω0
(3.28)

du

dφ
=
δv

ω0
− ωz0 (3.29)

dv

dφ
= −αu

ω0
− γv

ω0
(3.30)

Now we have the constants all condensed, however we still have ω0 in the equations so

in order to remove them I will create new variables for them instead of trying to condense the

ω0 into the ones above. The new variables will be ω = ω
ω0

, u = u
ω0

, v = v
ω0

, and θ = θ
ω0

. Then

the final equations of motion should be the ones shown below.

dθ

dφ
= ω (3.31)

dω

dφ
= u− βθ (3.32)

du

dφ
= δv − ωω0z0 (3.33)
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dv

dφ
= −αu− γv (3.34)

We know that ω0 and z0 are both constants so we can group them together and call

it σ. Now that we have the simplified linearized equations of motion we can now put it into

matrix representations as shown in equation 3.32 and then find the determinant to obtain the

eigenvalues of the system.


λ −1 0 0

β λ −1 0

0 σ λ −δ

0 0 α λ+ γ




θ

ω

u

v

 = 0 (3.35)

The determinate of the matrix above is calculated using Mathematica’s determinate

function for matrices and the output is:

Det = αβδ − γσλ+ βγλ− σλ2 + βλ2 + αδλ2 + γλ3 + λ4 = 0

Where λ = iΩ

From the determinant we can see that α ∗ δ are always together so we can set α ∗ δ = χ.

This finally simplification results in the determinant below.

Det = χβ − γσλ+ βγλ− σλ2 + βλ2 + χλ2 + γλ3 + λ4 = 0

Solving the determinate requires a quartic equation since the determinant is a fourth-order

polynomial. However, it is much easier to graph the function with values for each constant to

obtain what the eigenfrequencies for the system will be. Thus, this is the farthest analytical

analysis of the RLC resonant circuit. Afterward, we transitioned into determining if the circuit

can be physically constructed. The first limitation in building the circuit is that our inductor

has a copper wire that is too fine, leading to high resistance in the coil and a smaller capacitance.

Using experimental data we obtained from the voltage measurements of the inductor, we used an

RLC fitting routine to fit the data using a least-squares method to find the optimal parameters

of the inductor to work in the circuit setup. The routine was done at low frequencies around 38

- 40 Hz since that was the resonant frequency of the dipole we used at the time. The results we

obtained showed that the inductor internally would need a resistance of 13.90 Ohms, 0.1575 µF,

and 23.73 mH. Due to the parameters required for the inductor, we are unable to make or find
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one that fits all three criteria due to materials and the degree of precision needed to make such an

inductor. However, instead of using a negative resistor, we will be using the model 113 Pre-Amp

to create a feedback loop with the inductor to apply the gain to the neodymium-magnet.

3.5 Coil Integration and New Equations of Motion

Due to the unrealistic values of resistance, capacitance, and inductance, we had to go with

developing a magnetic feedback loop. The original loop incorporated two coils and a preamp.

The first coil picks up the dipole oscillations and then sends it to the preamp, which amplifies the

signal to send through the second coil, which generates electromagnetic oscillations. However,

the coils will produce more complex behavior in the system by changing or affecting some of

the differential equations of motion. Thus, for the two coils one dipole feedback loop system,

the equations of motion need to be re-derived once more. However, we will have equations

representing the interaction of both coils with the magnet and with each other based on their

positions. The diagram of the dipole with the coils is shown in figure 3.3. From the image, we

obtain the following differential equations. [19]

dθ

dt
= ω (3.36)

Vd = G(Ω)Vp (3.37)

Vp = Vpi − IpRc (3.38)

Vpi = Lp
dIp
dt

+M
dId
dt

+NpπR
2
effp

d

dt
(Bm · Up) (3.39)

Vp
Zin

+ Cc
dVp
dt

+ Ip = 0 (3.40)

G
dω

dt
= (m×Bd)z −B0sin(θ) (3.41)



Chapter 3. Electronic Feedback Loop - Single Dipole System 46

After completing the cross product the new expression for dω
dt will become the following:

dω

dt
= Id

µ0NR
2
eff

4Gd3
(2sin(θ − θ1)cos(θ2) + cos(θ − θ1)sin(θ2))− B0

G
sin(θ) (3.42)

Now that we have all the terms of the equations of motion we can linearize with sin(θ) = θ

and cos(θ) = 1. We also need to solve the time derivative of the field of the magnet and the

pickup coil. The dot product, when simplified and derived, gives us 0. Thus, the final linearized

equations of motion are as followed:

dθ

dt
= ω (3.43)

Vd = G(Ω)Vp (3.44)

Vp = Vpi − IpRc (3.45)

iΩLdId = Vd − IdRs (3.46)

Vp
Zin

+ CciΩVp + Ip = 0 (3.47)

dω

dt
= Id

µ0NR
2
eff

4Gr3
d

(2sin(θ1)cos(θ2)− cos(θ1)sin(θ2))− B0

G
θ (3.48)

Vpi = iΩLpIp + iΩIdM +
µ0mp

4πr3
p

ω(2cos(φ2)sin(θ1 + φ1)− sin(φ2)cos(θ1 + φ1)) (3.49)

From the equations above we see that there are two sets of equations of motion; mechan-

ical and electronic. The mechanical equations of motion relate to the dipole’s motion. Equation

3.43 describes the dipole’s angular velocity, which is the change in the angle formed with the

x-axis over time. Equation 3.48 describes torque on the dipole due to the background magnetic

field as well as the position and orientation of the two coils. The electronic equations of motion

are divided among the drive coil and the pick-up coil. In the equations, the drive coil ignores the
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voltages induced by the moving permanent magnet (PM) dipole moment and the small pickup

coil current. For the drive coil, equation 3.44 describes the feedback amplifier gain where G(Ω)

is what amplifies the pick-up coil signal. The amplification can be a complex number based on

filtering and phase shifting parameters. Equation 3.46 describes the drive coil and current rela-

tionship. The last three equations above correlate to the pick-up coil. Equation 3.45 is relating

the internal voltage drop of the pick-up coil. The pick-up voltage is reduced by the internal coil

resistance Rc. Equation 3.47 shows the relationship between the pick-up current and voltage.

The internal pick-up current the amplifier input impedance Zin and the coil capacitance. The

final equation, 3.49, describes the internal pick-up coil induction from self-inductance, mutual

inductance with the drive coil, and the motion of the permanent magnetic dipole. Using the

new feedback equations of motion we can explore how the feedback controls dipole’s motion.

However, initializing the feedback with the dipole, there was interference from the mutual in-

ductance of the two coils. To limit the mutual inductance the spatial orientation and positions

of both coils need to be determined analytically. [19]
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3.6 Feedback Loop Coil Orientation Optimization

Figure 3.3: The image shows a 2D geometric representation of the one dipole two coil feedback loop system.

The position and orientation of all components are represented by the angles formed. The drive coil is further

away since it can affect the dipole from farther distances. The pick-up coil is closer to the dipole to measure its

oscillations. θ1 and θ2 represent the position and orientation of the drive coil. φ1 and φ2 represent the position

and orientation of the pick-up coil. θ is the position of the dipole relative to the X-axis. The diagram also

shows the unit vectors for the pick-up and drive coils by themselves and with the dipole. The unit vectors aid

in calculating the mutual inductance in the system. Ideally, the mutual inductance between the coils should be

zero, and the interaction between the coils and dipole should be maximal.

Now since we know the position of the drive coil with respect to the neodymium center we

can find the orientation of the pick-up coil with respect to the drive coil so there is no interaction

between the two coils. In order to do this, we can find the mutual inductance term for the coils

which can be done in a similar way that we found Bd above using the following equation and

substituting the correct vectors and unit vectors relating to the individual coils and using the

dot product between the vectors instead of the cross product. The general equation is shown

below. [7]

B(r) =
µ0m

4π

3Ur(Ur · Um)− Um
r3

(3.50)
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Using this similar equation we were able to find all the relations between the coils and the

magnet in terms of orientation and position in a 2D space since were are doing the experiment

on a flat table. The mutual inductance is given by the B(r) of the coils dot Um of either of the

coils. By expanding out the dot products we were able to obtain the expression for part of the

numerator being 3(U21 ·Um1) · (U21 ·Um2)− (Um1 ·Um2). After obtaining this expression we can

set the expression equal to 0 and then substitute using trig identities the corresponding cos and

angle terms for each part of the equation and then simplify to solve for one of the angles; θ1orθ2.

Solving the expression by substituting the correct unit vectors in we obtain the following value

for the mutual inductance corresponding to the orientations of the coils with respect to each

other:

M = C((3cos(θ2 − φ1 − φ2) + cos(θ2 + φ1 + φ2))(1 + r2
2)− (2cos(φ1)cos(θ2 − φ1 − φ2) + 6cos(θ2 + φ2))r2) (3.51)

C =
πµ0N1N2R

2
1R

2
2

r321

After solving for the orientations of the coils with respect to the neodymium-magnet at the

center we can now experiment analytically and physically if the angles allow us to minimize the

high-frequency feedback oscillations and maximize the feedback gain or essentially the oscillation

of the magnets.

Afterward, we used the equations of motion and put everything in matrix form to find the

determinant of the matrix, so we can get the roots to the polynomial expression the determinant

gives us. Since we wanted to find the roots of a very simple situation, we used the case where

the mutual inductance was 0. From this, we got the polynomial form:

Qλ− (β + λ2)(λLd +Rs) (3.52)

The original matrix was the following before we set the mutual inductance(M) equal to 0.
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λ −1 0 0 0 0 0

β λ −A(2sin(θ1)cos(θ2)− cos(θ1)sin(θ2)) 0 0 0 0

0 0 λLd +Rs 0 −1 0 0

0 0 0 −1 0 0 0

0 0 0 0 1 −g 0

0 0 0 Rc 0 1 −1

0 −B(2cos(φ2)sin(θ1 + φ1)− cos(θ1 + φ1)sin(φ2)) −λM λLp 0 0 1





θ

ω

Id

Ip

Vd

Vp

Vpi


= 0 (3.53)

Once we set the mutual inductance to 0 and found the determinant, and simplified the output,

we get the following expression for the polynomial that provides us with the roots:

BgAλ(2cos(θ2)sin(θ1)− cos(θ1)sin(θ2))(2cos(φ2)sin(θ1 + φ1)− cos(θ1 + φ1)sin(φ2))− (β + λ2)(λLd +Rs) (3.54)

In the full polynomial g is the gain term, β is the background field over the inertia G, A

is the
µ0NR

2
eff

4Gr3d
, and B is

µ0mp
4πr3p

. Within B, the mp is the dipole moment of the pick-up coil which

is just NIpπR
2
eff . Since we know all the constant variables and their meanings now as well as

the fact that we want zero mutual inductance, we solve for the angles orientations that allow

for zero mutual inductance with the expression for the mutual inductance, equation 3.51, and

then analytically find an equation or numerically find the angles that give the maxi um gain in

the system.

To solve the maximum orientations of the system, I solved for φ2 from the mutual

inductance term and then plugged that value into the φ2 in the gain term. From there I used

Mathematica’s maximization function to find the maximum value given by the orientations that

the gain will multiply which was 3.54 in terms of the other three angles and since I know that the

φ2 expression I derived analytically shown below we can back substitute the values of the other

three angles that give the maximum that allows me to find the value of φ2 without effecting the

maximum gain and leaving the mutual inductance in the system to be zero.

φ2 = −ArcTan(
−4cos(θ2)cos(φ1) + 2sin(θ2)sin(φ1) + (7cos(θ2) + cos(θ2 − 2φ1))r2 − 4cos(θ2 − φ1)r2

2

2cos(φ1)sin(θ2) + 4cos(θ2)sin(φ1) + (−5sin(θ2) + sin(θ2 − 2φ1))r2 + 2sin(θ2 − φ1)r2
2

) (3.55)

Using the φ2 expression in conjunction with the spatial orientation parameters that

determine the effect of the gain, I was able to identify the ideal positions and orientations of the
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drive and pick-up coils. The distance ratio of the drive to the pick-up has been set to be 5:1

respectively on the 2D image of the system above. In order the get the maximum gain of about

3.37, we need the specific angles below:

θ1 = 1.0307577357826916

θ2 = −0.5148402449919208

φ1 = 0.8177559661104004

φ2 = 0.02668032651015571

These values for the angles are shown in figure 3.4. Now that we have the single spin

system locked down mathematically, we can simply develop a double spin system simply by

adding another dipole on the same axis as the one before but respectively positioned parallel to

the field lines so it doe not feel any actual effects from the drive and pick up coil only from the

damping factor. We ultimately can make the damping factor anything we want as long as it

does not affect the geometrical relationships of the single spin and coil system we solved above.

This being said we can place an aluminum sheet next to the second dipole far enough away from

the dipole getting driven but close to damp the dipole that’s not driven. Then having the two

dipoles coupled will create the double spin system we simulated before.

The feedback loop has a restriction on the orientation and position of the pick-up coil,

drive coil, and magnetic dipole. In the system, we want the dipole to interact maximally with

the two coils, while the two coils have zero or minimal interaction with each other (zero mutual

inductance). To obtain the orientation and position of all three components of the system, we

can use the 2D schematic shown in figure 3.3. The figure takes into consideration the dipole

being the center of the entire system and the two dipoles being some ratio of distance away from

each other.
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Figure 3.4: The image shows the optimal position and orientation for the angles of the one dipole two-coil

system. The angles generate zero mutual inductance between the two coils and the most interaction with the

dipole. The ratio of the distance of the coils from the dipole is 1 to 5. The theoretical maximum gain factor

for the system is 4, but due to the zero mutual inductance restriction, it is 3.37. The setup shown above is one

of many that can produce a gain of 3.37. Based on the calculations, the coils need to be perpendicular to each

other while the magnetic field lines of the coils are parallel to each other but perpendicular to the dipole.

3.7 Summary of Findings

In this chapter, we have shown how the gain of rotational energy can be implemented in

our experimental system. The gain of rotational energy has been theoretically and analytically

examined for an RLC resonant circuit with negative resistance. The equations of motion for the

RLC resonant circuit with a negative resistor have been identified above. We have found the

characteristic eigenfrequencies for the RLC circuit. Each frequency corresponds to a particular

mode. Once we extrapolated the optimal resistor, inductor, and capacitor values for the circuit,

we realized that the circuit could not be built based on the values we obtained. This leads us to

construct a feedback back loop with two coils. The equations of motion for the two coil and one

dipole system were found. Afterward, the characteristic eigenfrequencies were obtained from

the matrix analysis. Once the mathematical analysis was completed, the two coils connected to

a preamp resulted in a feedback loop. Starting the magnet with an external impulse resulted

in the feedback loop kicking in to sustain the oscillatory behavior. We also were able to show

that the magnet had a slight tilt in its orientation inside the tube due to the earth’s magnetic

field. We were able to use an external magnet to straighten the dipole to an XY axis and then

using two additional larger background magnets symmetrically positioned away from the dipole

resulted in a background field behavior similar to an NMR machine.
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After testing the feedback loop at various conditions, a mutual inductance behavior

between the two coils was observable. Intuitively, a coil that measures magnetic oscillations

and another coil that produced magnetic oscillations would be able to communicate with each

other. This communication between the coils is not desired since it can complete a feedback

loop that overpowers the feedback loop with the dipole. Thus, the geometric constraints of

the two coils corresponding to the dipole had to be derived such that there is zero mutual

inductance between the two coils and maximum interaction between each coil and the dipole.

An optimization algorithm was used in Mathematica by constraining one angle relative to the

other three in the determinant. Afterward, identifying the angles that gave maximum interaction

between the coils and the dipole we were able to back-calculate the fourth angle such that there

was zero mutual inductance in the system. This resulted in the graph in figure 3.4. However,

the constraint angles force the maximum gain on the dipole to be 3.37 instead of 4.

3.7.1 Future Experimental Analysis

In our experimental analysis, we have demonstrated how resonance can apply gain into

a system through a feedback loop. However, the same behavior can be done with an RLC

circuit with a negative resistance implemented. In the future, the circuit can be built and

tested to verify the analytical derivations, the previous results of the simulations, and potential

technological novel applications. The circuit can be custom-built today for radio frequencies (20

kHz - 300 GHz), but it may take substantial time and resources to build and tune each custom

part to work at low frequencies (0 Hz - 600 Hz). If the circuit is built with the dipole another

dipole can be spaced a specific distance away with either a conductor to impose magnetic drag or

an RL/RLC circuit with a positive resistor, whichever method is easier to implement loss in the

system. The orientation and positional angles identified for the two coils are just one solution

that results in maximum interaction between the coils and dipole while having zero mutual

inductance. Thus, all the other angles corresponding to the positions and orientations of the

coils can be identified using the equations shown above with a similar optimization method used

or a better method. Once we started obtaining experimental data for the one dipole two-coil

system, there were pendulum motions observed in the dipole due to it being suspended from

a string of wire. To zero out the pendulum motion a clamp can be constructed such that the

dipole cannot sway in any direction forcing it to oscillate in the XY plane. Any experimental

method to get rid of the pendulum oscillations would work. However, in chapter 4, we will



introduce a custom-designed C-clamp specifically designed to hold the dipole and enable it to

rotate using jewel bearings.



Chapter 4
Raspberry Pi Control System

4.1 Overview

The proof of concept of applying gain applied to an oscillating dipole is shown in chapter

3. However, as we discussed in chapter 1 with the simple harmonic oscillator, there needs

to be greater control over the dipole motion by manipulating the phase of the applied gain

either through a digital or analog method. Furthermore, the pendulum motion from the current

setup needs to be addressed as well. Once these changes get implemented into the system,

measurements can be taken of the dipole’s motion to observe how each component changes the

equations of motion. The data will enable us to characterize the transient and steady-state

behavior of the system when there is gain applied and when the gain gets turned off. Finally,

once a complete understanding of how the dipole motion will change due to the gain apparatus,

another dipole can be placed nearby with loss to set up a pseudo-PT-symmetric coupled two

dipole system similar to the one computationally simulated in chapter 2.

4.2 Raspberry Pi Integration

A python code is designed and implemented in the feedback loop to obtain further control

of the dipole’s oscillations. The code continuously filters the waves picked up by the pick-up

coil digitally. Before developing the code, we first had to identify hardware capable of inputting

55
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and outputting electromagnetic waves, which would allow us to interface with the coils. We

ultimately found out that a Raspberry Pi 3 B+ with a HiFi Berry DAC/ADC sound would be

the cheapest and most versatile option. The Raspberry Pi has Python 3 built-in, which allows us

to develop a code to manipulate the electromagnetic waves inside. To send the electromagnetic

waves into the Raspberry Pi, we utilize the 8th-inch jack port on the HiFi Berry sound card

using BNC to 8th-inch adapter shown in Figure 4.1. The HiFi berry sound card sits on top

of the raspberry pi general-purpose input/output (GPIO) pins. The information obtained by

the pick-up coil gets converted and then travels through the audio ports into the GPIO pins

and then into the Python 3 code for manipulation. Once the code completes filtering, it sends

out the filtered wave to the drive coil or oscilloscope via the GPIO pins to the RCA ports on

the HiFi berry sound card and finally to the BNC to RCA adaptors, as shown in figure 4.1.

[3,4,8,11,12,13]

Figure 4.1: The image shows the Raspberry Pi B+ integrated setup with the two coils. The HiFi berry ADC

DAC sound card is sitting on top of the GPIO pins of the Raspberry Pi. The coils were custom built with BNC

cables attached. Thus, to connect them to the Pi-DAC module, BNC to RCA and BNC to 8th-inch adaptors

were used. The adaptors convert the signal to be sent into the Raspberry Pi to get manipulated and sent back

out. [3,4,8,12]

4.3 Python Assisted Control of Dipole Oscillations

We used a raspberry pi and hifi berry DAC/ADC sound card module to gain control of

the feedback loop. When attaching the sound card, you need to load all the drivers onto the

boot menu, or else the input and output channels will not work. Additionally, it is necessary
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to import the pyaudio library from the terminal for the Python 3 code to work. The pyaudio

library facilitates the input and output of audio signals into python through a NumPy array.

Array manipulation can allow us to change the input signal in any way and send it back out

to the drive coil to change the oscillatory behavior of the dipole. Using each element of the

NumPy array, a recursive band-pass filter can be applied such that the input signal is filtered by

a resonant frequency so only that frequency is sent out. Looping the code for the duration the

script runs enables real-time filtering of the pick-up coil signal. However, the filtering process is

delayed, which causes the output signal to be phase shifted. Adding additional internal delays

to the code can enable a greater degree of phase shift to happen. Furthermore, we can multiply

the NumPy array by scalar before the filtering process, so the signal amplitude gets amplified.

Further, taking steps to automate the filtering procedure remotely, we utilized a virtual network

to connect to the raspberry pi remotely. Now the python codes can be altered and run remotely

from anywhere.

4.3.1 Recursive Filter

The signal coming into the python code is in byte format and gets converted in numerical

float values using the command numpy.fromstring(array, dtype = np.float32). Afterward, a

recursive filter is applied to each element of the NumPy array of the signal. The filter uses the

previous two elements and weights them by scalars predetermined by the resonant frequency, Q

factor, and the sampling rate of the input signal. Equation 4.1 shows the form of the recursive

filter.

x[i] = a ∗ array[i] + b ∗ x[(i− 1)%CHUNK] + c ∗ x[(i− 2)%CHUNK] (4.1)

There is a lot of subtle things occurring in this filter. First, x is a predefined array the

same size as the signal array, but with all zeros. The constants a, b, and c are the constants

that weigh each term based on the factors mentioned above. The definitions for each term are

c = −e−
2πf0
Qf , b = 2e−

πf0
Qf cos(2π f0f ), and a = 1−b−c

Q . Thus, before running the filter, the scalars

need to be calculated in the same order they are defined. In each definition, f is the sampling

rate of the audio card which is set to 22050 for the program, f0 is the resonant frequency, and

the quality factor Q determines the bandwidth of the filter around the resonant frequency. The

array is the NumPy array with the signal from the pick-up coil. The index i indicates that the
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filter loops through every element of the signal array, change the value of that element based on

the filter parameters, and saves the value to the x array by overwriting the zero at that same

specified index. The second two terms use modular arithmetic with the previous two values of

the x array since modular arithmetic gives the remainder of division in python. The CHUNK

parameter is the size of the signal sample array, which for our code can be set to any power

of 2, such as 1024 or 8192. Thus, taking the modular of an index returns that same index,

but if the index is negative, it returns the last or second to last element of the array. This is

necessary to use since, at i = 1, the first element of the signal sample array does not have two

previous points that can be used to filter the current point. Using the modular index allows

us to use the last two elements of the x array, which are zero, to filter the first element of

the signal sample array. Once the filter is done changing all the elements in the sample array,

the x array can be converted back into bytes and sent out again as bytes using the command

x.astype(numpy.float32).tostring(). [11,16,18]

4.3.2 PyAudio Blocking Vs Callback Mode

The program we developed to filter uses the python package pyaudio. The first iteration of

the filtering code was designed in the blocking mode of pyaudio. The blocking mode requires an

audio stream to be initialized. The audio stream is what defines the sampling rate, sample chunk

size, and input/output channels of the audio device. Once the audio stream is defined, the sample

data array needs to be read into the program using the command stream.read(CHUNK), and if

there is overflow in data, then overflow can be set to false to avoid this with stream.read(CHUNK,

expectation on overflow = False). The read data has to be converted into numerical values using

the same numpy.fromstring() command above. The data is read into the program continuously

using a while loop that runs until the program is stopped. In the while loop, we implemented

the recursive filtering process such that frequency response to the filter is a bandwidth around

the target resonant frequency while all other frequencies far from the target go to zero once

the filtering is done the stream has to be called again to send out the data using the command

stream.write(x). Initial tests of the program showed it working fine. However, after a while,

we observed occasional glitches in the output on the oscilloscope. Glitches in the output could

have been due to the filtering happening in a nested loop. Another possibility could be there is

an internal audio buffer filling up, which wasn’t accounted for in the code. The glitches could

have occurred due to opening and closing the streams continuously in the while loop. The final
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prospect is compiling or timing errors occurring within python, which we have not considered

or accounted for in the code. [11,16,18]

To fix the glitching problem, we need to redesign the code such that we are running the

filtering process in the callback mode of pyaudio. The callback mode does not require the code

to read in or write out samples of data using the stream. The new mode initiates a callback

function embedded in the stream definition. Thus, the PyAudio response is to automatically

handle the input of sample data using the callback function. Inside the callback function, we can

manipulate the sample data using the recursive filter defined above. Once the data is filtered, the

callback function can return the filtered data without calling the stream. Thus, the definition

of the callback enables the audio input/output to be automated by the code without requiring

a loop that calls the stream to read and write data. Testing the new callback mode showed no

glitching behavior occurred, and the Raspberry Pi module was able to handle continuous input,

filtering, and output of data from the feedback system for prolonged periods. [11,16,18]

To make the dipole oscillate, I either had to physically spin it or use an external mag-

net and swipe by it quickly. Eventually, without any external gain applied to the dipole, the

oscillations would exponentially decay. However, starting the callback version of the recursive

filter after dipole oscillations get initiated, they are sustained indefinitely. However, to obtain

self-sustained oscillatory behavior with the feedback loop and raspberry pi required me to get

the dipole oscillating at the right frequency, the recursive filter to kick in at the right time,

and the geometric gain to be just stronger than the exponential decay the dipole experiences.

Subsequently, the code needed to be modified such that the input signal can be amplified and

phase-shifted such that the amplitude of the dipole exponentially increases. Due to the non-zero

nature of the input signal, even when there are no dipole oscillations, the correct amplification

and phase can theoretically cause the dipole’s oscillations to exponentially grow even if it is not

initially moving.

4.3.3 Phase Shifting and Amplification

Initially, I tried to implement code to phase shift the input wave before sending it back

out with the NumPy Fourier Transform packages. However, this method was computationally

expensive to do, so another way of adding time delays to cause a phase shift in the signal

had to be identified. Before adding additional time delays to cause phase shifts to occur, the



Chapter 4. Raspberry Pi Control System 60

internal processing time delay of the recursive filter and pyaudio callback loops have to be

determined. The internal phase shift of the raspberry pi module changes based on the input

frequency. Equation 4.2 shows the relationship between the phase and the input frequency and

an additional processing time delay.

dφ

df
=

2Q

f0
+ 2πτ (4.2)

Thus, using a signal generator and measuring the phase shift difference between the input

and output signal would help to determine the internal processing time delay (τ). Measurements

of phase difference due to small changes in the input frequency were obtained, giving a linear

result. Using the slope from the data, we found (τ) to be 92 milliseconds. The 92 milliseconds

corresponds to a phase shift of 0.578 radians which is about 33.12 degrees. Capturing the

input/output signal after the first few seconds upon initiating the python code the oscilloscope

shows that the 92-millisecond delay corresponds to a 3-4 cycle processing delay, as shown in

figure 4.2.

Figure 4.2: The two graphs show the initial wave in yellow and the processed outputted wave in blue on the

oscilloscope. The input yellow wave gets processed and the blue output wave exponentially grows to match the

input and exponentially decays once the input it off. The first graph shows the natural delay due to sending

the input signal through the filter. The second graph shows additional delays added to the output signal by

incriminating the delay parameter. There are 180 degrees of phase added to the system is observed on the

oscilloscope.

Adding additional time delays with the delay parameter enables the output to be at any

phase from 0°-360° or any multiple of those phases. The delay parameter can shift the data by

a discrete number of zero points such that it adds to the 3-4 cycle delay by some phase factor.
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Figure 4.2 shows a schematic of how the audio processing is complete, so a controlled phase shift

is applied.

Figure 4.3: The audio processing enables a controllable phase shift to be get applied to the output wave.

Utilizing an intermediate array preserve the output and input data as the python code is filtering and phase

shifting. The A1 array is the input array from the pick-up coil. The summation represents the recursive filter,

which calculates the filtered output data. The middle array (A0) is where the delay parameter gets implemented.

The delay parameter shifts the current element of the signal that gets processed by the summation. This shifting

is like adding zeros to the start of the input array. The zeros cause additional time delays to occur in the program

leading to a different phase between the input and output arrays.

Each element from the input signal array gets sent to a new intermediate array one at a

time as the filtering process is occurring. However, the filter is using the i-d element of the A0

array, and the previous two elements in the output array determine the new value to place in

the output array for the current i index. The delay in processing the intermediate array is what

causes a phase shift in the output dependant on the value of the delay parameter d. The phase

shift is proportionality related to the delay and can be calculated using equation 4.3.

dφ = 2π(d)
f0

f
(4.3)

Any phase shift can be predicted by the formula above for any resonant frequency,

sampling rate, or delay value in the program. The correct phase, if chosen enables maximum

electronic gain of the system or induces electronic loss of oscillatory behavior, essentially damp-

ening the dipole. Any other phase will determine an amplitude of oscillation proportional to

the maximum. In the electronic feedback system the total delay is (τ + dφ). Now if the right

phase is chosen, then the dipole will exponentially grow its oscillations from zero motion to the

maximum amplitude of oscillation. However, the time required for the oscillatory motion to
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grow from no visible motion may take up to five minutes. Additionally, the optimal phase of

the system is not known thus every delay parameter would have to be tested to see which would

start the dipole’s oscillatory behavior from zero motion. Thus, the number of points in each

sample array, CHUNK = 1024, times five minutes results in 85 hours of experimentally testing

each delay parameter to determine the optimal phase. This is not an ideal method, so the input

signal needs to be amplified before filtering. Inside the callback function before the filter, the

input signal once converted into numerical values from bytes, can be multiplied by a scalar. The

amplification acts as a kick-starter for the dipole since it only amplifies the amplitude of the

resonant frequency being sent out after filtering and phase shifting. Thus, the time to observe

the exponential growth of the dipole is cut down proportionally to the amplification. Once the

dipole starts oscillating, its amplitude gets picked up in the input signal and then amplified

again. This continues to happen until the maximum output of the sound card is hit, which is

about 3.3 volts. The digital amplification also has limitations since the largest value a signed

16-bit number can be is ± 32767. Ultimately, now the dipole can self-start its oscillations and

sustain them indefinitely using the feedback loop. [11,12,13]

4.3.4 Results of Raspberry Pi Integration

The integration of the raspberry pi module has shown to be capable of implementing a

phase shift and amplification onto the dipole. However, the most significant result of the exper-

iment was demonstrating that raspberry pi modules are capable of replacing more conventional

electronic instruments used in physics research worldwide. We have proven that these raspberry

pi modules can digitally amplify, phase shift, and filter signals continuously with minimal delay,

as shown in figure 4.2. However, due to the method of phase-shifting implemented, the minimum

and maximum frequency that theoretically can be shifted are calculated from RATE/f0. The

input and output waves are capable of having a 360 phase shift, but that phase gets divided

by the chunk size. If the rate in the program is 22050 and chunk size is set to 1024, then the

maximum frequency that can have every possible degree of phase shift is roughly 21.5 Hz. Thus,

this means that applying a phase shift with the delay parameter d at 21.5 Hz will result in

about one degree of phase shift per integer delay. Running the program for higher frequencies

will make the phase shift per delay more than one degree. The maximum frequency that would

allow 360 degrees of phase shifting is 612.5 Hz. At 612.5 Hz, the program would have a 28.44-

degree phase shift per delay parameter since 22050/612.5 = 36 and 1024/36 = 28.44 degrees
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per delay. At 612.5 Hz, the integer delay range would be d from 0 - 36, and any other integers

above that would result in greater than 360 degrees phase shift. Subsequently, the electronic

feedback loop module is limited to working with low-frequency systems. Nonetheless, if at higher

frequencies the phase-shifting can not be done digitally, the program is still capable of filtering

and amplifying. As long as the user is capable of coding and understanding the dynamics of the

audio processing methods, then they can utilize this electronic feedback loop module with any

low-frequency system by interchanging the pick-up sensor and drive coil.

4.4 C-Clamp

As discussed earlier in chapter 3, the experimental setup shown in figure 3.1 produced

pendulum motion at high gain values since the dipole was attached to a string. Thus, to limit

the dipole’s full motion on the XY plane and have no pendulum motion in the system, another

method to position the dipole needed to be constructed. This method also requires that the

dipole have very little friction, and the only dampening behavior is air resistance. Thus, using

solid works, a C-clamp apparatus was designed with the specifications shown in figure 4.4.
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Figure 4.4: The image shows the custom-designed clamp for the dipole such that there is no more pendulum

motion occurring when we go to higher frequencies. The C-clamp got designed in SolidWorks and machine-made.

All measurements are in millimeters. The clamp needed to be strong enough to hold the dipole without breaking

when the dipole oscillated, so the clamp was made of solid aluminum. However, having aluminum close to the

dipole produces eddy currents, so to avoid that, the clamp was designed into a C bracket. The C bracket design

reduced the interaction between the dipole and the aluminum while still making the clamp strong enough to hold

the dipole. There are two screw holes in the tiny arms of the clamp enabling two jewel bearings to be screwed

in. The other two screw holes on the side attach the clamp to an optical table.

Now that we can control the frequencies we drive the dipole at and the magnitude of the

drive based on the orientations of the coils, we need to hold the magnet at a fixed position,

still being able to rotate instead of hanging from a string. To do this, we have crafted in the

Wesleyan University Machine shop a C-clamp of our design to hold the magnet but allow it to

rotate with minimal friction with the help of jewel bearings. The schematic of the C-clamp is

shown below in figure 4.4. Figure 4.5 shows how we attached the magnet to the clamp to give

it minimal friction.

The C-clamp has two holes opposing each other, which are threaded to match the size of

two jewel bearings that can be screwed into the holes. Jewel bearings are used in old wristwatches

to reduce the friction of the mechanical moving parts. The jewel bearings were obtained from

SwissJewel Company, and the specific model was VS-100, length 0.25 inches, a radius of .003/.004

inches, jewel size V1.25, and thread size of 5-40 UNS-2. The jewel bearings are utilized in the
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C-clamp to enable a very sharp double-sided needle to rotate with minimal friction. The friction

applied to the pin is determined by how tight the screws are placed. The other two holes in

the C-clamp that are opposing each other are used to mount the clamp onto a stand which gets

mounted onto an optical table such that when the dipole oscillates the clamp does not move.

Placing the two magnets of the dipole on opposite sides of the needle held together by their

magnetic attraction is not ideal since the needle thickness causes a V-shaped gap on one side.

To get rid of the gap and make sure the dipoles are positioned flat across the needle on both

sides a 3D printed holder was made in Wesleyan’s Ideas Lab. The magnet holder is shaped like

the magnets, but slightly bigger with a hole on both sides for the magnets to sit. In the middle

is a thin film to separate the magnets by the thickness of the needle. A cylindrical hole runs

through the 3D printed magnet holder, which the needle can fit through. An image of the new

setup is shown in figure 4.4. [17]

Figure 4.5: The image shows the custom-designed clamp for the dipole such that there is no more pendulum

motion occurring when we go to higher frequencies. The two magnets that form the dipole sit opposite to

one another inside the 3D printed housing shown in red/orange. There is a thin 3D printed membrane with

a thickness slightly larger than the width of the needle on the inside. The needle slides through the housing

in-between the two dipoles without causing any gaps. The needle sits on jewel bearings, which are screwed into

the holes in the C-clamp. A lock nut is used to lock the jewel bearings in place since the oscillations of the dipole

loosen them. The clamp is attached to a mount and positioned onto an optical table. The drive coil and pick-up

coil are perpendicular to one another, so there is zero mutual inductance. The background magnets align the

dipole along one axis. Since the dipole is not hanging on a string, there is no slight tilt, so there is no need to

use another magnet to cancel the Earth’s magnetic field in this setup.
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Testing the new setup showed that the dipole is only oscillating in the XY plane of the C-

clamp. All other vibrational modes that occur get dampened out by the C-clamp and the optical

table. At very low frequencies the dipole has noticeable oscillations, but at higher frequencies,

the dipole oscillates too quickly to be noticeable. However, the most efficient energy transfer

from the drive coil to the dipole happens at the resonant frequency. At resonance, the amplitude

exponentially increases the fastest as well. To maintain a specific amplitude the python program

has to know the current amplitude of the dipole and change the parameters in the code to adjust

and sustain the amplitude of oscillation. To sustain a specific amplitude of oscillation in real-

time, an internal digital feedback loop needs to be designed. In the next section, we will go

further in-depth into the digital feedback loop (Hover code) designed to dynamically sustain a

specified amplitude.

4.5 Hover Code Development

By changing two variables in the code, the delay parameter (d) and the amplification

applied to the input wave, we can control the amplitude level. However, to dynamically control

the amplitude of the oscillating dipole, the current amplitude needs to be determined from

the input signal, and the two variables need to be adjusted accordingly. The range of the

delay parameter depends on the resonant frequency and sample size, while the range of the

amplification is ± 32767. To sustain a specific amplitude of oscillation the input signal amplitude

needs to be identified and compared to the specified amplitude of oscillation. If the amplitude

of the input signal is too high or too low, then the delay parameter and the signal amplification

are changed such that the dipole’s oscillations are slowly brought to the desired amplitude.

The amplitude can be determined by finding the maximum value in the Fourier transform of

the signal or by reading the voltage input from the HiFi berry ADC/DAC sound card. In the

program, I decided to calculate the amplitude with the Fourier transform of the signal using the

formula 2*numpy.fft.rfft(signal)/CHUNK. Once the Fourier transform gets generated, taking the

absolute value gives positive amplitudes, and this enables the python max function to compare

all the amplitude values to find the maximum amplitude associated with the signal to use in

the hover code. The calculation for the maximum amplitude can be placed inside the callback

routine, so for every signal that gets processed, there is a maximum amplitude associated with

it. Knowing the amplitude of oscillation for the dipole at any given time means an internal
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feedback loop can be created to hover around a specified amplitude of oscillation. The hover

code works by dynamically adjusting the variables and continuously checking the amplitude

level with the desired target amplitude. Testing the hover code demonstrated that the dipole

can lock in at a specified amplitude of 100. However, the program showed that the same hover

amplitude could be reached for various delay parameters and amplification values. This is due

to the current amplitude not being accurately calculated from the input chunk of data. The

input chunk of data may not have the current max amplitude inside since it may not contain

a full cycle of data. This means that the hover code is checking the current amplitude of the

dipole, and it may be over the target of 100, but the sample data gives a value under 100. In this

situation, the hover code readjusts to get back the target, inadvertently changing the optimal

parameters. The internal feedback loop of the hover code amplitude measurement doesn’t match

the amplitude of the dipole with the external feedback loop. Thus, further investigation into

how the dipole interacts with the electronic feedback loop and the variables in the python code

would help to stabilize the hover code.

4.6 Summary of Findings

In this chapter, we have successfully shown the integration of a raspberry pi module

with the two coils one dipole feedback loop system. The system was able to convert the elec-

tromagnetic oscillations into a digital signal array, which can be manipulated through array

multiplication and addition such that the input signal can be amplified, filtered to a resonant

frequency, and phase-shifted by a specified angle. This results in complete digital control over

the oscillatory behavior of the dipole. Based on the resonant frequency we were able to identify

the internal inherent phase shift/time delay that the filtering and amplifying programs imposed

onto the input and output waves. Afterward, we incorporated a delay parameter that enables

further phase shifting to occur, and based on the delay, resonant frequency, and sampling rate

we can calculate the additional phase shifting/time delay the program can introduce into the

system. Also, a C-clamp was custom machined to restrict the magnet from having pendulum

oscillations. The magnet was positioned onto a needle placed inside of two jewel bearings on

the opposite ends of the clamp allowing the needle and magnet to spin freely in the XY plane.

The raspberry pi python-assisted controls demonstrated sustained oscillatory feedback behavior

for 24+ hours. Thus, the system is durable enough to work for long periods unless disturbed
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by an external factor or the power to the raspberry pi lost. Furthermore, we demonstrated that

the raspberry pi python code can auto-start the dipole oscillations by amplifying the non-zero

magnetic fluctuations that the pick-up coil measures from its surroundings. This information

gets amplified by a scalar and then sent at the dipole. Eventually, after some time, the dipole

starts oscillating and the pick-up coil input gets overridden by the dipole oscillations. The time

it takes the dipole to auto-start its oscillations can be altered by changing the scalar that is

multiplying the initial non-zero information from the pick-up coil or by changing the phase

slightly to increase exponential growth or decrease exponential growth behavior of the oscilla-

tions. Finally, a hover code was developed that enables us to dynamically control the variables

in the code such that a specific dipole oscillation amplitude can be sustained instead of letting

the amplitude exponentially grow to the maximum value.

4.6.1 Future Experimental Work: Pseudo PT-Symmetric System

Even though we developed a raspberry pi module capable of filtering, phase shifting,

and amplifying, the system has its limits. The maximum frequency this system can work

for is about 612.5 Hz. For all frequencies above 612.5 Hz, a 360-degree phase shift is not

possible. However, a frequency of 21.5 Hz is when each delay corresponds to one degree of phase

shift between the input and output waves. Thus, the program can only filter low-frequency

systems like the magnetic dipole system and can not filter higher frequencies. Consequently,

finding another method of phase-shifting implemented into the system that is not dependent on

integer delay values, then the raspberry pi module can be implemented into higher frequency

systems. Furthermore, a new phase-shifting code can enable a one-to-one correlation in the delay

parameter and the amount of phase-shifting happening to the input and output independent of

the dipole’s resonant frequency.

The equations of motion for the one dipole and two coil system were derived and explored.

However, the equations of motion for the system with the integrated raspberry pi and python-

assisted controls were not incorporated into the equations of motion. The motion of the dipole

depends on the resonant frequency, delay parameter, sampling rate, chunk size initialized in the

program, which indicates that they will affect the equations of motion. Therefore, a new set of

equations of motion need to be derived and analytically analyzed for the raspberry pi module

with the two coils, python code, and dipole. Once the equations of motion are re-derived and the
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characteristic eigenfrequencies are identified then it will be much more clear how each parameter

in the python code affects the motion of the dipole. The equations of motion may lead to a

better method of developing a hover code resulting in the dipole having a predefined constant

amplitude gain applied to it that can dynamically adjust to sustain itself even in the presence

of another dipole with loss applied.

Combining all the dynamical results of our analytical and experimental observations,

we can create a Pseudo PT-Symmetric two dipole system. To do so their needs to be another

C-Clamp built with the same magnets in an identical 3D printed magnetic holder spaced apart

from one another. This will result in symmetry in the system we wanted. The first dipole will

have gain imposed by the feedback loop raspberry pi module and the second dipole will have loss

either by introducing a conductor geometrically positioned in 3D space or another feedback loop

raspberry pi module system having a phase parameter set to dampen the oscillatory behavior.

Introducing a second feedback loop will require another optimization analysis to be done, like

in section 3.4, of the orientation and position of the four coils relative to the two dipoles. Once

the eight angles of the four coils are identified the Pseudo PT-symmetric two dipole system can

be created. The system can also be created with the RL and RLC negative resistance circuit

expanded in section 3.2. Any of these methods can be used to implement gain and or loss to

either of the dipoles. The gain and loss can be controlled such that they are equal or one is

greater than the other just like we did in the c program in chapter 2. After the set up of the

pseudo-PT-symmetric two dipole system is complete then initial conditions can be explored to

observe the deviations from the simulated results. Furthermore, if the equations of motion for

each dipole is coupled together then we can once again analytically derive the γPT and γCritical

points such that they are dependant on the parameters of the geometry of the coils and the

raspberry pi python code. However, I suspect that the γPT and γCritical will only be scaled by

the parameters similar to how the gain was scaled down when the two coils were geometrically

restricted. Therefore, the underlying physics of the system will inherently stay the same if it

can be shown that all geometric and program parameters scale away.

If the underlying physics in the experimental system is not the same in the simulated sys-

tem then further studies will have to be conducted. However, regardless of whichever conclusion

for the system is reached through further future research, the novel applications of the systems

should be explored. The results of the two dipole system can be used to create a PT-symmetric



NMR instrument, a magnetic signaling device, or improving the sensitivity of current instru-

mentation. Due to the modular design of the feedback loop with the raspberry pi module, it can

be customized by interchanging the coils with different sensors such that the code can be used

on other electromagnetic, mechanical, acoustic, optical, biological, computational, thermal, and

or electronic systems.



Chapter 5
Conclusion

Our analyses of the single-body magnetic PT-symmetric system fundamentally prove gain

can be implemented physically onto a magnetic dipole with a feedback loop and modulated/fil-

tered with python programs on a raspberry pi device. The optimal parameters for the maximum

gain of 3.37 and zero mutual inductance get obtained mathematically using substitution within

maximization programs. Figure 5 demonstrates the angular parameters identified for the single

spin system with the two coils. The dipole must be perpendicular to the parallel field lines from

the coils, so interactions are maximal. As we continue working with the one spin system, we

will expand to solve the differential equations for a dual-spin system. However, geometrically

the positioning of the second dipole can be along the same axis as the first one at a point where

the field lines are parallel to each other and the second dipole.

Ultimately, the Raspberry Pi provides greater control of the gain applied to a single dipole

through the feedback system. The filtering/phase shifting code developed has been proven to

work with the hardware currently being used for the experiment. The code can filter any input

wave sent into the raspberry pi, such as sound waves and electromagnetic waves at any resonant

frequency. Optimization of the code for the two-dipole system is underway, but the general code

can be utilized for any purpose requiring a recursive bandwidth filter. Upon assembly of the

entire system, more data will matriculate, which will provide a greater understanding of the

behavior of the magnetic systems. Exploration of unique modes or boundary conditions within

the chaotic and symmetrical regions of the system will give insight into future applications for
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novel technologies.
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Appendix A
Experimental Parts

Images of each individual component used in the experimental portion of the lab is shown

below. Combing all the hardware components, with the software code, and the analytical results

enables full control over the motion of the dipole.

Figure A.1: Image of the Raspberry Pi B+ used in the experiment. The Pi contains 40 general-purpose

input-output (GPIO) pins. It comes with 4 USB 2.0 ports, 100 Base Ethernet, power consumption of 0.5W -

1W, 1.4GHz 64-bit quad-core processor, dual-band wireless LAN, full-size HDMI, and Bluetooth 4.2/BLE. The

raspberry pi also has a Micro SD port for loading your operating system and storing data and 5V/2.5A DC

power input. [12]
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Figure A.2: Image of HiFi Berry DAC+ ADC which is compatible with the Raspberry Pi B+ model and

sits on top of the GPIO pins on the Raspberry Pi. There is no additional cables or soldering needed to connect

the parts. The HiFi Berry DAC+ ADC has an 8th-inch audio input port and two RCA audio output ports.

Both the input and output support sample rates up to 192kHz. It enables stereo input and output through a

192kHz/24bit high-quality Burr-Brown DAC and ADC. Once placed on top of the raspberry pi the kernel needs

to be updated with type the command dtoverlay=hifiberry-dacplusadc inside the config.txt of the terminal [8]
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Figure A.3: The BNC Female to 3.5mm Mono Male Adapter which enables the input signal from the pick up

coil to be sent into the HiFi Berry DAC+ ADC and then the Raspberry Pi. [4]

Figure A.4: The BNC Female to RCA Male Adapter which enables the output signal to get sent out through

the RCA ports on the HiFi Berry DAC+ ADC to the drive coil. [3]
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Figure A.5: The solid-works specifications for the C-clamp. All measurements are set to millimeters. The

screw tap through are also labeled so they match the jewel bearings and the screws on the mount for the optical

table.

Figure A.6: A jewel bearing is a plain bearing in which a metal spindle turns inside a jewel-lined pivot hole.

The image above is the jewel bearings used to reduce the friction on the needles when the dipole was oscillating.

The jewel model is VS-100, length of .250”, a radius of .003/.004”, jewel size of V1.25, and thread size of 5-40

UNS-2. [17]
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Figure A.7: Image of first dipole used inside of test tube. The two magnets making the dipole are clamped to

a single piece of Nylon string. String was obtained from a PVC network communication cable.
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Figure A.8: The top image is of the 113 pre-amp used to amplify and filter the signals from the pick-up coil.

The bottom image is the oscilloscope used to make measurements of the dipole oscillations and the input and

output wave phase shifts.

Figure A.9: The four images above show the two larger magnets used in the experiment to produce a back-

ground field to align the dipole.
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Figure A.10: Image of the drive coil with it’s cables soldered to an RCA cable.

Figure A.11: Image of the pick-up coil used soldered to a BNC cable.
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Figure A.12: The image shows a close up of the jewel bearing screw and the lock nut used to prevent it from

loosening. The smaller image is showing the jewel bearing standing up with the jewel pocket showing. The other

side of the screw is the flat head side used to turn the jewel bearing to increase or decrease the friction on the

dipole.

Figure A.13: The image shows the gap that is created between the two magnets of the dipole when they are

placed between the needle.
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Figure A.14: The image shows the 3D printed magnet housing. The housing enables the double ended needle

to pass through the center. The housing has a thin film in the center that is just the thickness of the needle.

There are pockets the size of the two magnets on both sides. The magnets sit flush in the pockets with out

creating a gap in the dipole.



Appendix B
Simulation Code

B.1 C Code

All graphs of the simulated equations of motion can be produced using the functions

defined below and initial conditions. Using multiple functions in an iterative loop enables the

program to reduce the errors while exploring various parameters and limits to the system. All

the definitions listed below were used to explore the boundary graphs shown in figure 2.8 and

2.9. The code ramps through γ values and iterates θ1 at each of the γ values. However, each

individual function like the RK4 and the exact cycle with the limits on ω2 and θ2 from the eigen

frequencies can be used individually to produce the phase plot and the parameter graphs shown

in chapter 2.

B.1.1 RK4 Function

#inc lude <s t d i o . h>

#inc lude <s t d l i b . h>

#inc lude <math . h>

#inc lude <s t r i n g . h>

double functn ( double a [ ] ) ;
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long amoeba ( double p [ ] [ 1 6 ] , double y [ ] , i n t ndim , double f t o l ) ;

void show simplex ( i n t ndim , double p [ ] [ 1 6 ] , double y [ ] ) ;

void s e t g u e s s e s ( i n t ndim , double a [ ] ) ;

void show params ( i n t ndim , double a [ ] ) ;

double t1 , t2 , g , w1 , w2 , x0 , dt , per iod1 , e r ror , ot2 , ow2 ;

//The 4 th order runge kutta func t i on with time step input

void rk4step ( double dt ){

// i n i t i a t i n g the v a r i a b l e s needed f o r the 4 th order Runge Kutta

double t1t , t2t , w1t , w2t , m1w1, m1w2, m1t1 , m1t2 , m2w1, m2w2, m2t1 , m2t2 ;

double m3w1, m3w2, m3t1 , m3t2 , m4w1, m4w2, m4t1 , m4t2 , dt2 ;

// below each step i s c a l c u l a t e d with equat ions o f motion

dt2 = dt /2 ;

t1 t = t1 ;

t2 t = t2 ;

w1t = w1 ;

w2t = w2 ;

m1w1 = −s i n ( t2 t )∗ cos ( t1 t )−2∗ s i n ( t1 t )∗ cos ( t2 t )+g∗w1t ;

m1w2 = −s i n ( t1 t )∗ cos ( t2 t )−2∗ s i n ( t2 t )∗ cos ( t1 t )−g∗w2t ;

m1t1 = w1t ;

m1t2 = w2t ;

t1 t = t1 + m1t1∗dt2 ;

t2 t = t2 + m1t2∗dt2 ;

w1t = w1 + m1w1∗dt2 ;

w2t = w2 + m1w2∗dt2 ;
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m2w1 = −s i n ( t2 t )∗ cos ( t1 t )−2∗ s i n ( t1 t )∗ cos ( t2 t )+g∗w1t ;

m2w2 = −s i n ( t1 t )∗ cos ( t2 t )−2∗ s i n ( t2 t )∗ cos ( t1 t )−g∗w2t ;

m2t1 = w1t ;

m2t2 = w2t ;

t1 t = t1 + m2t1∗dt2 ;

t2 t = t2 + m2t2∗dt2 ;

w1t = w1 + m2w1∗dt2 ;

w2t = w2 + m2w2∗dt2 ;

m3w1 = −s i n ( t2 t )∗ cos ( t1 t )−2∗ s i n ( t1 t )∗ cos ( t2 t )+g∗w1t ;

m3w2 = −s i n ( t1 t )∗ cos ( t2 t )−2∗ s i n ( t2 t )∗ cos ( t1 t )−g∗w2t ;

m3t1 = w1t ;

m3t2 = w2t ;

t1 t = t1 + m3t1∗dt ;

t2 t = t2 + m3t2∗dt ;

w1t = w1 + m3w1∗dt ;

w2t = w2 + m3w2∗dt ;

m4w1 = −s i n ( t2 t )∗ cos ( t1 t )−2∗ s i n ( t1 t )∗ cos ( t2 t )+g∗w1t ;

m4w2 = −s i n ( t1 t )∗ cos ( t2 t )−2∗ s i n ( t2 t )∗ cos ( t1 t )−g∗w2t ;

m4t1 = w1t ;

m4t2 = w2t ;

// the f i n a l output i s the average o f the s t ep s

t1 = t1 + ( ( m1t1+2∗(m2t1+m3t1)+m4t1 )/6)∗ dt ;

t2 = t2 + ( ( m1t2+2∗(m2t2+m3t2)+m4t2 )/6)∗ dt ;

w1 = w1 + ( (m1w1+2∗(m2w1+m3w1)+m4w1)/6)∗ dt ;

w2 = w2 + ( (m1w2+2∗(m2w2+m3w2)+m4w2)/6)∗ dt ;

}
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B.1.2 Print Cycle No Interpolation

void c y c l e p r i n t ( double dt , double x0 ){

// t h i s i s where the outputs are pr in ted without i n t e r p o l a t i o n

t1 = x0 ;

t2 = ( −((( g∗g+s q r t ( g∗g∗g∗g−8.0∗g∗g +4 .0 ) ) /2 . 0 ) )∗ t1 ) ;

w1 = 0 ;

w2 = ( g ∗ ( ( ( g∗g−4.0+ s q r t ( g∗g∗g∗g−8.0∗g∗g +4 .0 ) ) /2 . 0 ) )∗ t1 ) ;

// open a text to save the data to graph

FILE ∗ i n f i l e = fopen (” t e s t s . txt ” , ”w” ) ;

// run through RK4 func t i on f o r h a l f the phase

whi l e (w1 <= 0 ){

rk4s tep ( dt ) ;

// p r i n t to the f i l e

// p r i n t f (”% l f \ t%l f \ t%l f \ t%l f \n” , t1 , t2 , w1 , w2 ) ;

// f p r i n t f ( i n f i l e , ”% l f \ t%l f \ t%l f \ t%l f \n” , t1 , t2 , w1 , w2 ) ;

}

// run through RK4 func t i on f o r other h a l f the phase

whi l e (w1 > 0){

rk4s tep ( dt ) ; // run the rk4 func t i on and p r in t terms below

// pr in t to the f i l e

// p r i n t f (”% l f \ t%l f \ t%l f \ t%l f \n” , t1 , t2 , w1 , w2 ) ;

// f p r i n t f ( i n f i l e , ”% l f \ t%l f \ t%l f \ t%l f \n” , t1 , t2 , w1 , w2 ) ;

}

// c l o s e the f i l e and save to graph

f c l o s e ( i n f i l e ) ;

}
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B.1.3 Exact Conditions Function

void e x a c t c o n d i t i o n s ( double dt , double x0 )

{// t h i s does one c y c l e without p r i n t i n g but with i n t e r p o l a t i o n

double t10 , t20 , w10 , w20 , per iod1 , in t e r thea ta1 , f r a c t i o n 1 , i n t e r t h e a t a 2 ;

double counter1 , interw1 , interw2 , x1 , y1 , y0 ;

t1 = x0 ;

w1 = 0 ;

x1 = t2 ; // t h i s needs to be changed to the new theata2 t imes x0

y0 = w1 ;

y1 = w2;// t h i s needs to be changed to the new w2 times x0

FILE ∗ i n f i l e = fopen (” t e s t s 1 . txt ” , ”w” ) ;

whi l e (w1 <= 0 )

{

rk4s tep ( dt ) ;

counter1++;

f p r i n t f ( i n f i l e , ”% l f \ t%l f \ t%l f \ t%l f \n” , t1 , t2 , w1 , w2 ) ;

}

whi le (w1 > 0)

{

t10 = t1 ;

t20 = t2 ;

w10 = w1 ;

w20 = w2 ;

rk4s tep ( dt ) ;

f p r i n t f ( i n f i l e , ”% l f \ t%l f \ t%l f \ t%l f \n” , t1 , t2 , w1 , w2 ) ;

counter1++;
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}

f c l o s e ( i n f i l e ) ;

/// t h i s i s where the i n t e r p o l a t i o n happens

f r a c t i o n 1 = (−w10/(w1−w10 ) ) ;

per iod1 = counter1 ∗ dt + f r a c t i o n 1 ∗ dt ;

interw1 = w10 + f r a c t i o n 1 ∗(w1−w10 ) ;

interw2 = w20 + f r a c t i o n 1 ∗(w2−w20 ) ;

i n t e r t h e a t a 1 = t10 + f r a c t i o n 1 ∗( t1−t10 ) ;

i n t e r t h e a t a 2 = ( t20 + f r a c t i o n 1 ∗( t2−t20 ) ) ;

Perror = (1/ x0 )∗ ( s q r t (1/4∗ ( i n t e r t h e a t a 1 − x0 )∗ ( i n t e r t h e a t a 1 − x0)+

( i n t e r t h e a t a 2 − x1 )∗ ( i n t e r t h e a t a 2 − x1)+( interw1 − y0 )∗ ( interw1 − y0)+

( interw2−y1 )∗ ( interw2 −y1 ) ) ) ;

}

B.1.4 Exact Cycle

double e x c a t c y l e ( double t21 , double w21)

// exact c o n d i t i o n s needs to be analyzed very c a r e f u l l y

{

/// t h i s does one c y l e without p r i n t i n g but with i n t e r p o l a t i o n

double t10 , t20 , w10 , w20 , per iod1 , in t e r thea ta1 , f r a c t i o n 1 , i n t e r t h e a t a 2 ;

double counter1 , interw1 , interw2 , x1 , y1 , y0 , Perror ;

t1 = x0 ;

w1 = 0 ;

t2 = t21 ;

w2 = w21 ;

Perror = 0 ;

//FILE ∗ i n f i l e = fopen (” t e s t s 1 . txt ” , ”w” ) ;

whi l e (w1 <= 0 )

{
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rk4s tep ( ) ;

counter1++;

// f p r i n t f ( i n f i l e , ”% l f \ t%l f \ t%l f \ t%l f \n” , t1 , t2 , w1 , w2 ) ;

i f ( f abs ( t2 )>4 | | f abs ( t1 )>4){

Perror = 1 ;

goto sk ip ;

}

}

whi le (w1 > 0)

{

t10 = t1 ;

t20 = t2 ;

w10 = w1 ;

w20 = w2 ;

rk4s tep ( ) ;

// f p r i n t f ( i n f i l e , ”% l f \ t%l f \ t%l f \ t%l f \n” , t1 , t2 , w1 , w2 ) ;

counter1++;

}

sk ip :

// f c l o s e ( i n f i l e ) ;

// p r i n t f (”\n%l f , %l f , %l f , %l f , %l f \n\n\n” , t10 , t20 , w10 , w20 , counter1 ) ;

// p r i n t f (”\n%l f \n\n” , counter1 ) ;

i f ( Perror == 0){

/// t h i s i s where the i n t e r p o l a t i o n happens

f r a c t i o n 1 = (−w10/(w1−w10 ) ) ;

per iod1 = counter1 ∗ dt + f r a c t i o n 1 ∗ dt ;

interw1 = w10 + f r a c t i o n 1 ∗(w1−w10 ) ;

interw2 = w20 + f r a c t i o n 1 ∗(w2−w20 ) ;

i n t e r t h e a t a 1 = t10 + f r a c t i o n 1 ∗( t1−t10 ) ;

i n t e r t h e a t a 2 = ( t20 + f r a c t i o n 1 ∗( t2−t20 ) ) ;
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// p r i n t f (”The f r a c t i o n and per iod i s \ t%l f \ t%l f \n” , f r a c t i o n 1 , per iod1 ) ;

// p r i n t f (” I n t e r p o l a t e d w1 i s %l f \ nInt e rpo l a t ed w2 i s

%l f \ nInt e rpo l a t ed theata1 i s %l f \ nInt e rpo l a t ed theata2 i s %l f \n” ,

interw1 , interw2 , in t e r thea ta1 , i n t e r t h e a t a 2 ) ;

Perror = (1/( x0 ) )∗ s q r t ( 0 . 2 5 ∗ ( ( i n t e r t h e a t a 1 − x0 )∗ ( i n t e r t h e a t a 1 − x0)+

( i n t e r t h e a t a 2 − t21 )∗ ( i n t e r t h e a t a 2 − t21)+

( interw2−w21 )∗ ( interw2 − w21 ) ) ) ;

// p r i n t f (”\ nPercent e r r o r i s %l f \n” , Perror ) ;

}

e r r o r = Perror ;

r e turn Perror ;

}

B.1.5 Function

double functn ( double a [ ] )

{

// This 3D t e s t func t i on i s a sharp s p h e r i c a l s h e l l we l l at rad iu s 1 with

// a weak minimum in the 111 d i r e c t i o n . Sigma i s the width , dd i s the

// weak t i l t i n g toward the 111 d i r e c t i o n . −− Min at ˜ ( 0 . 5 7 7 , 0 . 577 , 0 . 577 )

re turn e x c a t c y l e ( a [ 0 ] , a [ 1 ] ) ;

// Here ’ s an a l t e r n a t v e s imp le r p a r a b o l i c minimum −− min o f 1 .0 at (2 , 3 , 4)

// return 1.0+( a [ 0 ] −2 . 0 )∗ ( a [ 0 ] −2 .0 ) + ( a [ 1 ] −3 . 0 )∗ ( a [ 1 ] −3 .0 ) +

( a [ 2 ] −4 . 0 )∗ ( a [ 2 ] −4 . 0 ) ;

}

B.1.6 Ameoba

long amoeba ( double p [ ] [ 1 6 ] , double y [ ] , i n t ndim , double f t o l )

{
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double const alpha = 1 . 0 , beta = 0 . 5 , gamma = 2 , de l t a = 0 . 5 ;

double pr [ 1 6 ] , prr [ 1 6 ] , pbar [ 1 6 ] ; // these w i l l be used ndim +1

double ypr , yprr ;

i n t i , j , i l o , i h i , i n h i ;

i n t mpts = ndim +1;

long i t e r = −1;

double r t o l = 1 0 . ;

// p r i n t f (”\n ” ) ;

whi l e ( r t o l > f t o l )

{

i t e r = i t e r + 1 ;

i f ( i t e r >10000)

{

p r i n t f (”\nNot converg ing ! Stopped at 10000 i t e r a t i o n s .\n ” ) ;

r e turn 10000 ;

}

i l o = 1 ;

// IDENTIFY HIGHEST, NEXT HIGHEST, LOWEST

i f ( y [ 0 ] > y [ 1 ] )

{

i h i = 0 ;

i n h i = 1 ;

}

e l s e

{

i h i = 1 ;

i n h i = 0 ;

}

f o r ( i = 0 ; i < mpts ; i++)
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{

i f ( y [ i ] < y [ i l o ] )

{

i l o = i ;

}

i f ( y [ i ] > y [ i h i ] )

{

i n h i = i h i ;

i h i = i ;

}

e l s e i f ( y [ i ] > y [ i n h i ] )

{

i f ( i != i h i )

{

i n h i = i ;

}

}

}

// eva lua t i on o f t o l e r a n c e −− based on the d i f f e r e n c e between the h i ghe s t

//and lowest s implex va lue s

r t o l = fabs ( y [ i h i ] − y [ i l o ] ) ;

// ac tua l func t i on e r r o r between hi and l o po in t s

// r t o l = 2 .0∗ f abs ( y [ i h i ] − y [ i l o ] ) / ( f abs ( y [ i h i ] ) + fabs ( y [ i l o ] ) ) ;

// e r r o r r e l a t i v e to func t i on value

// repor t the p rog r e s s

// p r i n t f (”% ld h i = %14.6E l o = %14.6E r t o l = %10.4E\n” , i t e r ,

y [ i h i ] , y [ i l o ] , r t o l ) ;

// AVERAGE OF ALL VERTICES BUT THE HIGHEST. THIS IS THE CENTER OF THE
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// ”FACE” ACROSS FROM THE HIGHEST AND THE RAY ALONG WHICH TO EXPLORE

f o r ( j = 0 ; j< ndim ; j++)

{

pbar [ j ] = 0 ;

}

f o r ( i = 0 ; i< mpts ; i++)

{

i f ( i != i h i )

{

f o r ( j = 0 ; j < ndim ; j++)

{

pbar [ j ] = pbar [ j ] + p [ i ] [ j ] ;

}

}

}

// REFLECT THE HIGHEST POINT THROUGH THIS FACE WITH A FACTOR ALPHA

f o r ( j = 0 ; j < ndim ; j++)

{

pbar [ j ] = pbar [ j ] / ( double ) ndim ;

pr [ j ] = pbar [ j ] − alpha ∗(p [ i h i ] [ j ] − pbar [ j ] ) ;

}

// CHECK the FUNCTION

ypr = functn ( pr ) ;

// IF IT ’ S BETTER, TRY AGAIN WITH AN ADDITIONAL FACTOR OF GAMMA

i f ( ypr <= y [ i l o ] )

{

f o r ( j = 0 ; j < ndim ; j++)

{

prr [ j ] = gamma∗pr [ j ] + ( 1 . 0 − gamma)∗ pbar [ j ] ;
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}

// CHECK FUNCTION

yprr = functn ( prr ) ;

// IF THIS IS BETTER, REPLACE THE HIGHEST

i f ( yprr < y [ i l o ] )

{

f o r ( j = 0 ; j < ndim ; j++)

{

p [ i h i ] [ j ] = prr [ j ] ;

}

y [ i h i ] = yprr ;

}

// OTHERWISE USE THE FIRST EXTRAPOLATION

e l s e

{

f o r ( j = 0 ; j < ndim ; j++)

{

p [ i h i ] [ j ] = pr [ j ] ;

}

y [ i h i ] = ypr ;

}

// IF THE FIRST FAILED TO BETTER THE NEXT HIGHEST

}

e l s e i f ( ypr > y [ i n h i ] )

{

// REPLACE THE HIGHEST IF ITS BETTER

i f ( ypr < y [ i h i ] )

{

f o r ( j = 0 ; j < ndim ; j++)
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{

p [ i h i ] [ j ] = pr [ j ] ;

}

y [ i h i ] = ypr ;

}

// EITHER WAY, LOOK FOR A BETTER POINT BY CONTRACTING TOWARD THE AVERAGE

f o r ( j = 0 ; j < ndim ; j++)

{

prr [ j ] = beta ∗ p [ i h i ] [ j ] + ( 1 . 0 − beta ) ∗ pbar [ j ] ;

}

// CHECK FUNCTION

yprr = functn ( prr ) ;

// ACCEPT AN IMPROVEMENT

i f ( yprr < y [ i h i ] )

{

f o r ( j = 0 ; j < ndim ; j++)

{

p [ i h i ] [ j ] = prr [ j ] ;

}

y [ i h i ] = yprr ;

}

// HIGH POINT PERSISTS −− CONTRACT ABOUT THE LOWEST

e l s e

{

f o r ( i = 0 ; i < mpts ; i++)
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{

i f ( i != i l o )

{

f o r ( j = 0 ; j < ndim ; j++)

{

pr [ j ] = d e l t a ∗ (p [ i ] [ j ] + p [ i l o ] [ j ] ) ;

p [ i ] [ j ] = pr [ j ] ;

}

y [ i ] = functn ( pr ) ;

}

}

}

}

// IF ORIGINAL REFLECTION GAVE A MIDDLE SIZE , REPLACE HIGH POINT

e l s e

{

f o r ( j = 0 ; j < ndim ; j++)

{

p [ i h i ] [ j ] = pr [ j ] ;

}

y [ i h i ] = ypr ;

}

}

// show simplex (ndim , p , y ) ;

r e turn i t e r ;

} // end o f amoeba

B.1.7 Show Simplex

void show simplex ( i n t ndim , double p [ ] [ 1 6 ] , double y [ ] )

{

i n t i , j ;
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p r i n t f (”\ nSimplex po in t s . . . \ n ” ) ;

f o r ( i = 0 ; i <= ndim ; i++) // s implex index

{

p r i n t f (”\n ( ” ) ;

f o r ( j = 0 ; j < ndim ; j++) // parameter space coord inate

{

p r i n t f (”p[%d][%d ] = %14.6E, ” , i , j , p [ i ] [ j ] ) ;

}

p r i n t f (” ) y[%d ] = %14.6E” , i , y [ i ] ) ;

}

p r i n t f (”\n ” ) ;

}

B.1.8 Show Parameters and Set Guesses

// f i l l s the parameter array with gue s s e s

void s e t g u e s s e s ( i n t ndim , double a [ ] )

{

i n t i ;

p r i n t f (”\ nEnter i n i t i a l gue s s e s f o r the %d func t i on parameters

. . . \ n\n” , ndim ) ;

f o r ( i = 0 ; i < ndim ; i++)

{

p r i n t f (” a[%d ] = ” , i ) ;

s can f (”% l f ” , &a [ i ] ) ;

}

}

// shows the parameter array

void show params ( i n t ndim , double a [ ] )

{
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i n t i ;

f o r ( i = 0 ; i < ndim ; i++)

{

p r i n t f (” a[%d ] = %14.6E\n” , i , a [ i ] ) ;

}

}

B.1.9 Ameobacycle

void ameobacycle ( ){

double sz0 = . 2 5 ;

double counter ;

double p [ 1 6 ] [ 1 6 ] , y [ 1 6 ] ;

double a [ 1 6 ] , b [ 1 6 ] , sz [ 1 6 ] ;

double f t o l , g u e s s f ;

i n t ndim , i , j , s a t i s f i e d , imin , i t e r ;

char resp [ 8 ] ;

ndim = 2 ;

f t o l = 1 .0E−14;

s a t i s f i e d =0;

f o r ( i = 0 ; i < ndim ; i++)

{

sz [ i ] = sz0 ; // a l l dimansion the same

}

f o r ( i = 0 ; i <= ndim ; i++) // note <= f o r ndim + 1 simplex po in t s

{

f o r ( j = 0 ; j< ndim ; j++)

{
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i f ( j == i ) // bump t h i s one up by sz

{

p [ i ] [ j ] = a [ j ] + sz [ j ] ;

}

e l s e

{

p [ i ] [ j ] = a [ j ] ;

}

b [ j ] = p [ i ] [ j ] ;

}

// y s t o r e s the cur rent func t i on va lue s at each s implex po int

y [ i ] = functn (b ) ;

}

// Al l s e t up . Run the minimizat ion . . .

i t e r = amoeba (p , y , ndim , f t o l ) ;

// SHOW RESULTS (SMALLEST OF THE SIMPLEX POINT)

// show simplex (ndim , p , y ) ;

// Use to show a l l o f the s implex content f o r debugging .

// f i n d the index o f the s m a l l e s t valued s implex po int

imin = 0 ;

f o r ( i = 0 ; i <= ndim ; i++)

{

i f ( y [ i ] < y [ imin ] ) { imin = i ;}

}

// recove r the bes t parameters from the above po int

f o r ( i = 0 ; i < ndim ; i++)

{

a [ i ] = p [ imin ] [ i ] ;

}
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// p r i n t f (”\n Minimized parameters a f t e r %d simplex s t ep s :\n\n” , i t e r ) ;

// show params (ndim , a ) ;

// p r i n t f (”\n Function value = %14.6E\n” , functn ( a ) ) ;

}

B.1.10 Gamma Ramp

void gammaramp (){

f o r ( g = . 0 0 1 ; g < . 7 3 2 ; g = g +.001){

f o r ( x0 = . 0 1 ; x0 < 1 . 5 7 ; x0 = x0 + .001 ){

ameobacycle ( ) ;

i f ( e r r o r == 1){

goto gammap ;

}

}

gammap :

p r i n t f (”% l f \ t%l f \n” , g , x0 ) ;

t2 = ot2 ;

w2 = ow2 ;

}

// p r i n t f (”% l f \ t%l f \ t%l f \ t%l f \ t%l f \ t%l f \n” , x0 , t2 , w2 , m, Perror , counter ) ;

// f p r i n t f ( i n f i l e , ”\n%l f \ t%l f \ t%l f \ t%l f \ t%l f \n” , x0 , t2 , w2 , m, Perror ) ;

}

B.1.11 Main Function

i n t main ( )

{

dt = . 0 1 ;

w2 = ( g ∗ ( ( ( g∗g−4.0+ s q r t ( g∗g∗g∗g−8.0∗g∗g +4 .0 ) ) /2 . 0 ) )∗ x0 ) ;



Appendix B. Simulation Code 103

t2 = ( −((( g∗g+s q r t ( g∗g∗g∗g−8.0∗g∗g +4 .0 ) ) /2 . 0 ) )∗ x0 ) ;

ot2 = t2 ;

ow2 = w2 ;

gammaramp ( ) ;

}



Appendix C
Raspberry Pi Integration Codes

Complete audio processing to complete a feedback loop can be done with the code below

with the raspberry pi setup shown in chapter 4. The callback mode pyaduio is shown below.

Blocking mode is similar setup but requires writing and reading input and output signals.

C.1 Callback Mode Code

# Al l nece s sa ry imports f o r the program [ 1 1 ]

import pyaudio

import time

import numpy as np

import math

import cmath

from t k i n t e r import Tk , Button , Text , END, Label

from time import s l e e p

######################################################################

””” Rate/ f0 = 22050/ f0 . The lowest f 0 that g i v e s 360 degree phase

c o n t r o l i s 22 Hz . The maximum f0 would have to be 22050 l ead ing to 1

104
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un i t o f de lay g i v ing a 360 degree so c o n t r o l l i n g phase won ’ t be p o s s i b l e

beyond the range o f 22 Hz and 600 Hz . A new method o f phase s h i f t i n g

needs to be implemented to accommodate other f r e q u e n c i e s . An i n c r e a s e d

Chunk s i z e or Rate might be away to s o l v e the i s s u e .”””

######################################################################

# channel needs to be s e t to 1 f o r sound card

# Proce s s ing rate , sample s i z e ( chunk ) , and the type o f audio stream i s de f ined

CHANNELS, RATE, CHUNK, FORMAT = 1 , 22050 , 1024 , pyaudio . paInt16

p = pyaudio . PyAudio ( ) # This i s were pyaudio system i s abbrev iated to p

# The va lue s below are f o r the r e c u r s i v e f i l t e r

f , f0 , Q = RATE, 16 .44 , 5

c = −math . exp((−2∗math . p i ∗ f 0 )/ (Q∗ f ) )

b = 2∗math . exp((−math . p i ∗ f 0 )/ (Q∗ f ) )∗ math . cos (2∗math . p i ∗ f 0 / f )

a = (1−b−c )/ (Q)

# The two empty array o f z e r o s CHUNK times f o r f i l t e r i n g and phase s h i f t i n g

x = np . z e ro s (CHUNK)

a0 = np . z e r o s (CHUNK)

d = 0 # t h i s i s the de lay f a c t o r that phase s h i f t s output wave

amp = 32700 #This i s the a m p l i f i c a t i o n value

#The c a l l b a c k d e f i n i t i o n a l l ows the audio stream to handle input t ing and outputt ing

#The b lock ing mode r e q u i r e s the program to read and wr i t e data i n s i d e a whi l e loop

#Using whi l e loop c r e a t e s t iming e r ro r s , but c a l l b a c k f i x e s them automat i ca l l y

de f c a l l b a c k ( in data , frame count , t ime in fo , f l a g ) :

#The g l o b a l v a r i a b l e s pass va lue s from the c a l l b a c k to out s id e c a l l b a c k

g l o b a l a0 , x , a , b , c , f0 , Q, d
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# convert data to numpy array

audio data = np . f r omst r ing ( in data , dtype=np . in t16 )

#Amplify the s i g n a l by a s c a l a r

audio data = audio data ∗ amp

# Mult ip ly data by f i r s t parameter o f f i l t e r a to speed up f i l t e r

a1 = audio data ∗ a

# Star t the r e c u r s i v e f i l t e r loop

f o r i in range (0 , CHUNK) :

i f i == d :

a0=a1

# Run the r e c u r s i v e f i l t e r equat ion

# Implement a de lay in the input array

x [ i ] = a0 [ i−d ] + b ∗ x [ ( i −1)%CHUNK] + c ∗ x [ ( i −2)%CHUNK]

# output data at t h i s po int becomes np . f l o a t 6 4

#Convert the data in to 16 b i t i n t e g e r s and a s t r i n g o f b i t s

audio = x . astype (np . in t16 ) . t o s t r i n g ( )

re turn ( audio , pyaudio . paContinue ) # re tu rn ing data and cont inue the c a l l b a c k

# s e t t i n g up the stream with c a l l b a c k and predetermined va lue s above

stream = p . open ( format=FORMAT,

channe l s=CHANNELS,

ra t e=RATE,

output=True ,

input=True ,

s t r eam ca l l back=ca l lback ,

f r a m e s p e r b u f f e r=CHUNK)
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stream . s t a r t s t r e a m ( ) # s t a r t i n g the stream

#Creat ing buttons and Tkinter to change v a r i a b l e s in r e a l time

de f f0 add1 ( va lue ) :

g l o b a l f0 , a , b , c

f 0 = f0 + value

c = −math . exp((−2∗math . p i ∗ f 0 )/ (Q∗ f ) )

b = 2∗math . exp((−math . p i ∗ f 0 )/ (Q∗ f ) )∗ math . cos (2∗math . p i ∗ f 0 / f )

a = (1−b−c )/ (Q)

f 0 s t r . c o n f i g ( t ex t=”F0 = ” + s t r ( f 0 ) )

de f d add1 ( va lue ) :

g l o b a l d

d = d + value

d s t r . c o n f i g ( t ex t=”D = ” + s t r (d ) )

de f Q add1 ( value ) :

g l o b a l Q, a , b , c

Q = Q + value

c = −math . exp((−2∗math . p i ∗ f 0 )/ (Q∗ f ) )

b = 2∗math . exp((−math . p i ∗ f 0 )/ (Q∗ f ) )∗ math . cos (2∗math . p i ∗ f 0 / f )

a = (1−b−c )/ (Q)

Q str . c o n f i g ( t ex t=”Q = ” + s t r (Q) )

de f f 0 sub1 ( va lue ) :

g l o b a l f0 , a , b , c

f 0 = f0 − value

c = −math . exp((−2∗math . p i ∗ f 0 )/ (Q∗ f ) )

b = 2∗math . exp((−math . p i ∗ f 0 )/ (Q∗ f ) )∗ math . cos (2∗math . p i ∗ f 0 / f )

a = (1−b−c )/ (Q)

f 0 s t r . c o n f i g ( t ex t=”f0 = ” + s t r ( f 0 ) )

de f d sub1 ( va lue ) :

g l o b a l d

d = d − value

d s t r . c o n f i g ( t ex t=”D = ” + s t r (d ) )
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de f Q sub1 ( value ) :

g l o b a l Q, a , b , c

Q = Q − value

c = −math . exp((−2∗math . p i ∗ f 0 )/ (Q∗ f ) )

b = 2∗math . exp((−math . p i ∗ f 0 )/ (Q∗ f ) )∗ math . cos (2∗math . p i ∗ f 0 / f )

a = (1−b−c )/ (Q)

Q str . c o n f i g ( t ex t=”Q = ” + s t r (Q) )

root = Tk( )

f 0 s t r = Label ( root )

f 0 s t r . pack ( )

d s t r = Label ( root )

d s t r . pack ( )

Q str = Label ( root )

Q str . pack ( )

f 0 s t r . c o n f i g ( t ex t=”F0 = ” + s t r ( f 0 ) )

Q str . c o n f i g ( t ex t=”Q = ” + s t r (Q) )

d s t r . c o n f i g ( t ex t=”D = ” + s t r (d ) )

Button ( root , t ex t =’F0 + 1 ’ , command=lambda ∗ args : f0 add1 ( 1 ) ) . pack ( )

Button ( root , t ex t =’F0 − 1 ’ , command=lambda ∗ args : f 0 sub1 ( 1 ) ) . pack ( )

Button ( root , t ex t =’D + 1 ’ , command=lambda ∗ args : d add1 ( 1 ) ) . pack ( )

Button ( root , t ex t =’D − 1 ’ , command=lambda ∗ args : d sub1 ( 1 ) ) . pack ( )

Button ( root , t ex t =’Q + 1 ’ , command=lambda ∗ args : Q add1 ( 1 ) ) . pack ( )

Button ( root , t ex t =’Q − 1 ’ , command=lambda ∗ args : Q sub1 ( 1 ) ) . pack ( )


