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Abstract

Fuel tanks filled with organic aerogel might increase the safety level of hy-

drogen storage for hydrogen combustion vehicles. Aerogel, a material with high

porosity and good thermal insulation, readily adsorbs liquid and might prevent

a rapid change in temperature and catastrophic release of fuel in the event of an

accident. This project modeled how chunks of aerogel retained liquids in a burn-

ing environment and built a simulation model to match the experimental data

for methane. The model was a sphere of organic aerogel initially saturated with

liquid methane and held at a fixed high temperature on the surface. The model

simulated the heat conducting into the aerogel sphere, evaporating liquid methane

and hence increasing pressure. At the same time gas particles diffused out due to

the pressure gradient. The liquid weight as a function of time is compared with

the experiments. The simulation has allowed us to obtain a characteristic time

scale that would apply not only to methane but also other gases. The result would

help us evaluate the feasibility of aerogel filled hydrogen fuel tanks.
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Chapter 1

Introduction

1.1 Hydrogen Fuel and Aerogel

Hydrogen is seen as a major energy carrier for the future. It is a clean source

of power which creates only water after combustion. Hydrogen can be stored in

gaseous forms, in liquid forms, in metal hydride or in porous systems. The latter

two are safer but the technologies are not as mature. Since hydrogen is gaseous

under ambient conditions, how to pack sufficient amount of hydrogen becomes a

problem. Compression and liquefaction help improve the amount stored in a fixed

volume. However, more important than sufficient storage is the safety of storage

because hydrogen is explosive. This project studies the safety of liquid hydrogen

stored in aerogel.

Aerogel is a synthetic material first created in 1931. Samuel S. Kister of

Stanford University found a way to dry gelatinous substances without collapsing

the structure [2]. Hence aerogel is a porous material of which as much as 99.8

1



Chapter 1. Introduction 2

percent of the volume is empty space. Aerogel can be made of inorganic or organic

material such as silica, aluminum oxide or carbon. The aerogel chunks studied in

this project are made of phenol-furfural and are black [3].

Aerogel has several applications. NASA used silica aerogel to collect star-

dust. Since the structure of aerogel provides the best cushion, aerogel can slow

down the stardust without destroying the particles. In addition, silica aerogel

is transparent and it helps to find the stardust particles. Aerogel has a large

surface area and can serve as catalysts. Moreover, Aerogel’s low thermal con-

ductivity leads to the invention of aerogel container, which insulates heat better

than Styrofoam containers. This project investigates applying the properties of

aerogel, nanometer-sized pores of aerogel and low thermal conductivity, to make

safer liquid hydrogen storage devices.

1.2 Summary of Work

This thesis is divided into four big chapters, the mechanism of fluid desrop-

tion in porous media under a temperature and a pressure gradient, the compu-

tational simulations, experiments, and simulation and experiment comparison.

Instead of hydrogen, this project works with liquid methane because it is readily

available and safer than hydrogen. If not specially indicated, all the constants are

constants of methane which are listed in Appendix A.

The two questions Chapter 2 answers are: how are particles stored in aerogel

and how do particles leave the aerogel. Given a specific temperature and pressure,

under equilibrium, the methane isotherm shows the amount of liquid stored in

aerogel. Diffusion and conduction are introduced to explain particle movement
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and temperature changes. The heat that conducts in evaporates liquid particles

and raise the pressure. Then particles diffuse out due to a pressure gradient.

The isotherm, diffusing equation, diffusing coefficient, conduction equation and

thermal conductivities are introduced and discussed in Chapter 2.

With the diffusion and conduction equations, the equations used to describe

the system are derived. A constant high temperature at the surface represents the

flame. The computational simulations are programmed in Mathcad. First a one

dimensional model is developed and then Moving Boundary Model is introduced.

Two analytically solvable problems are studied in Chapter 3 to gain more insight

of the system. Finally the three dimensional model is built and the results are

presented.

The simulation results are compared with the experimental results in Chap-

ter 4. The set up and the result of the experiment is presented. The effective

length of each sample is found to obtain the characteristic time. The relationship

between length and disorption time was derived in Chapter 3 and can be observed

in the experimental result. The simulation do not exactly matches with the ex-

perimental results. One possible explanation about the temperature distribution

on the surface of the sample is raised. Chapter 5 further studies the temperature

effects on the simulation model.

At the end the results have allowed us to obtain a characteristic time scale

that would apply not only to methane but also other gases. The result would help

us evaluate the feasibility of aerogel filled hydrogen fuel tanks.



Chapter 2

Theory

The theory chapter is divided into two sections. The first section discusses

how methane is stored in aerogel. The second section presents how methane

is driven out of aerogel. Diffusion equations describe how particles move and

conductions describe how heat flows. Two sets of equations are coupled together

and control the rate of methane leaving aerogel which will be further discussed in

Chapter Three.

2.1 Distribution of Liquid and Gas inside Aero-

gel - Isotherm

In this section, how the methane is stored in aerogel is studied. The pore

here is modeled as a hollow spheres as illustrated in Figure 2.1. A pore has pore

size a, and a layer of liquid methane with thickness d is adsorbed on the surface

of the pore. The thickness of the liquid is related with pressure. When a pore is

4
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Figure 2.1: A pore in the aerogel. The pores in aerogel are modeled as hollow spheres

with radius a. The grey color represents the organic material surrounding the pore.

The pore has radius a and a layer of liquid with thickness d is adsorbed on the inner

surface of the pore.

filled with liquid the pressure is called the saturation pressure Psat. The saturation

pressure depends on temperature and the following equation is fit to the data from

NIST. Figure 2.1 plots the saturation pressure as a function of time.

Psat(T ) = 1059.2 exp (
−1039.38

T
) MPa

When the pressure is lower than the saturation pressure, the chemical po-

tential helps with finding the thickness of the liquid layer. When equilibrium is

reached, the chemical potential is the same throughout the pores. Thus the gas

has chemical potential µgas and it can be expressed as: [5].

µgas = µ0 + kT ln(
P

Psat

) µ0 = saturated chemical potential (2.1)

The chemical potential of the liquid consists of two parts, one from the sur-

face tension and one from van der Waals attraction force. The pressure difference
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Figure 2.2: Methane’s saturation pressure v.s Temperature. The function is fit to the

saturation pressure data from NIST Chemistry WebBook. When the temperature is at

112.3 K the pressure is 0.1 MPa (1 atm).
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across a curvature is ∆P = −2γ
R

, where γ is the surface tension ( 0.01346 N/m

for methane), and R is the radius of the curvature. Thus the chemical potential

per liquid particle due to surface tension is written as ∆µs. z
3
1 is the volume each

liquid particle occupies (z3
1 = ρ

m
).

∆µs = −2 γ z3
1

a− d

The chemical potential contributed from the van der Waals attraction is

derived from the inter-particle force, or potential u = −α
r6 [6]. The van der Waals

force acting on one particle distance d away from the surface is found by integrat-

ing through the entire solid. The energy is:

−4

3
πα

a3

d3
· 1

(2a− d)3

This expression is simplified by defining k Tv the lowering energy by adsorbing

one particle onto a flat surface (a → ∞). The van der Waals temperature Tv is

about 1500 K.

−kTv

(z1

d

)3
= −4

3
πα

1

8d3
(a→∞)

Then the chemical potential contributed from the van der Waals attraction is:

∆µv = −kTv z
3
1

d3
· 8a3

(2a− d)3

Define dimensionless quantity z = d
a

and p = P
Psat

. The the liquid particle

has chemical potential:

µliq = µ0 −
k Tv z

3
1

a3
· 8

z3 (2− z)3
− 2 γ z3

1

a (1− z)
(2.2)

When it is in equilibrium, the chemical potential of the gas and the liquid

are equal. Thus the isotherm is found by equating µgas and µliq and then solve

for the pressure.

Ta =
8Tv z

3
1

a3
Tb =

2 γ z3
1

a k
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p(T, z) = exp[−Ta
T

1

z3 (2− z)3
− Tb

T

1

1− z
] (2.3)

Figure 2.3: Isotherm for methane in aerogel with pore size a = 100 nm at 112.3 K.

The critical pressure is 0.997 when the red line curves back. For adsorption, when the

pressure is above the critical pressure, the tension in the liquid pulls liquid in and the

pore is saturated. Therefore, for p greater than 0.997, z equals to 1 as the dash line

indicates.

The isotherm (2.3) tells us how much liquid is stored in a single pore for a

given pressure and temperature. When the pore size is 100 nm and the tempera-

ture is at methane’s boiling temperature 112.3 K, the isotherm is plotted in Figure

2.1. For p smaller than 0.987, z is smaller 0.05 and for p greater than 0.987, z is

saturated to 1. This means that the pore is almost empty unless the pressure is

close to the saturation pressure. When the temperature is higher than the boiling
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temperature, the saturation pressure is a fast growing function. So it requires a

even higher pressure to fill up the pores. This result will be very important when

we are simplifying the simulation model.

2.2 Diffusion and Conduction

2.2.1 Diffusion Equations

Given a concentration difference, particles move from high to low concentra-

tion. Diffusion is a result of random motions of particles but under the hypothesis

that the rate of transfer is proportional to the concentration gradient measured,

the process can be described mathematically [7]. In one dimension:

J = −D∂n
∂x

(2.4)

∂n

∂t
= −∂J

∂x
(2.5)

(2.4) and (2.5) are the equations for one dimensional model where J is the flux,

rate transfer per unit area. D is called the diffusion coefficient, n is the concen-

tration of diffusing substance, and x and t are the spatial and time coordinates

respectively.

If the diffusion coefficient is uniform everywhere, then the equation becomes

∂n
∂t

= D ∂2J
∂x2 to which n(x, t) =

(
A cos(kx) +B sin(kx)

)
e−λ2t is a solution [8].
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Figure 2.4: A tube inside aerogel with pore size a; adsorbed liquid thickness z and

length L.

However, most of the time the diffusion coefficient is not a fixed constant. In

a long cylinder with radius r, assuming the flow is laminar, then Poiseuille’s law

(2.6) describes how fluid flows [9]. V̇ is the volume flow rate and η is the viscosity

of the fluid. The diffusion coefficient can be derived from Poiseuille’s law.

V̇ =
πr4

8η

∂p

∂x
Poiseuille’s Law (2.6)

In the following case, the number flow rate is derived for a cylinder with a

layer of liquid adsorbed on the wall (Figure 2.4). And the diffusion coefficient is

then defined.

Gas Diffusion Coefficient

V̇gas =
π(a− z)4

8ηg

∂p

∂x
ηg = gas viscosity
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From the ideal gas law:

ngas =
N

V
=

p

kT

∂n

∂x
=
∂n

∂p

∂p

∂x
=

1

kT

∂p

∂x

N =
p

kT
V

Ṅgas =
p

kT
V̇gas

=
p

kT

π(a− z)4

8ηg

∂p

∂x

=
πp(a− z)4

8ηg

∂n

∂x

Flux J is Ṅ divided by the area πa2 Thus

Jgas =
Ṅ

πa2
=

p

8ηg

(a− z)4

a2

∂n

∂x

Compared with (2.4), the diffusion coefficient is

Dgas(p) =
p

8ηg

(a− z)4

a2
(2.7)

Liquid Diffusion Coefficient

The diffusion coefficient for liquid is a little bit more complicated. For

laminar flow, the velocity of fluid at the cylinder wall has zero speed. The flow

has greater velocity as it is further away from the cylinder wall. The viscosity

force is proportional to the velocity difference. The volume flow rate is calculated

by finding the speed at each place. The force created by viscosity between two

sheets of flow with area A in Figure 2.5 is

F = ηA
ν2 − ν1

∆r
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Figure 2.5: Two layers of liquid flow with velocity v1 and v2. The layers have area

A had distance ∆r in between. The figure on the right is an illustration of cylindrical

layers of flow.

F (r) = η2πrL
∂ν

∂r
for the cylindrical model

Furthermore the total net force is zero. That is

F (r + ∂r)− F (r) + PA = 0 A = 2πrdr P =
dp

dx
L

2πηL
∂

∂r

(
r
∂ν

∂r

)+

0
+ 2πrL

∂p

∂x
= 0

Solve for ν then

ν(r) =
−1

4η

∂p

∂x
r2 + c1 ln r + c2

Plug in the boundary condition given by the aerogel tube, Figure 2.4

ν(a) = 0; F (b) = 0

to find the constants c1 and c2.

c1 =
1

2η

∂p

∂x
b2

c2 =
(1

η

∂p

∂x

)(a2

2
− b2

2
ln a

)
Therefore ν becomes:

ν(r) =
1

2η

∂p

∂x

((a2 − r2)

2
+ b2 ln(

r

a
)
)

(2.8)
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Integrate ν(r) from b to a to get V̇

V̇liq =

∫ a

b

ν(r)2πrdr (2.9)

With b = a− z and liquid viscosity ηl, the integral becomes

V̇liq =
π

8ηl

∂p

∂x
a4

(
1− 4

(a− z

a

)2

+ 3
(a− z

a

)4

− 4
(a− z

a

)4

ln
(a− z

a

))
(2.10)

What is needed is the flux ( J = Ṅ
πa2 ) and Ṅ = ρ

m
V̇ for liquid. And again,

changing ∂p
∂x

to ∂n
∂x

by ∂n
∂x

= 1
kT

∂p
∂x

, we got

Jliq =
kTρ

8ηl m
a2

(
1− 4

(a− z

a

)2

+ 3
(a− z

a

)4

− 4
(a− z

a

)4

ln
(a− z

a

))
∂n

∂x
(2.11)

Dliq =
kTρ

8ηl m
a2

(
1− 4

(a− z

a

)2

+ 3
(a− z

a

)4

− 4
(a− z

a

)4

ln
(a− z

a

))
(2.12)

The diffusion coefficients of liquid and gas methane as a function of pressure

is shown in Figure 2.6. It is worthwhile mentioned that Dliq depends on pressure

only because the thickness of the liquid layer is pressure dependent.

The total diffusion coefficient of particles is calculated from the sum of liquid

component and gas component. D = Dgas + Dliq With the diffusion coefficient,

one can numerically simulate the diffusion rate. This will be further discussed in

Chapter 3.2.2.

2.2.2 Conduction Equations

Heat conduction is no different than particle diffusion [7]. It is described

by conduction equations which is similar to diffusion equations. Heat flux JQ
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Figure 2.6: Diffusion coefficients for liquid and gas methane in the aerogel tube.

is proportional to temperature gradients and the heat change rate is described

as:

JQ = −K∂T

∂x
(2.13)

∆Q

∆t

1

V
= cρ

∂T

∂t
= K

∂2T

∂x2
(2.14)

c and ρ are heat capacity and density of the material. K is called the thermal

conductivity. The thermal conductivity is a function of temperatureK(T ). Figure

2.7 is the heat conductivity of methane. In the simulations, the value for heat

conductivities of methane are fit to the NIST data.

gas methane Kg(T ) = 4.008 · 10−6 · T 1.552 + 0.00648 W/mK

liquid methane Kl = 0.186 W/mK

aerogel Ka = 0.003 W/mK

Table 2.1: Thermal conductivity for methane gas, methane liquid and aerogel.
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Figure 2.7: Thermal conductivity for methane gas at different temperature (pressure

equals to 1 atm). The function is fit to the data in NIST Chemistry WebBook.

Heat conducts in not only through methane (liquid and gas) but also through

aerogel. The following discusses how to describe heat flow through a combination

of aerogel and gas methane, Kg⊕Ka. Only Kg⊕Ka is discussed because from the

previous discussion in Chapter 2.1 we know the pores are either empty or totally

filled. We would also need the thermal conductivity of liquid methane plus aerogel

but not the three together. Kl ⊕Ka has the same formula as Kg ⊕Ka with Kg

replaced by Kl.

Figure 2.8 illustrates how we simulate pores as cubes of size l3 evenly spaced

and imbedded in aerogel chunks. Figure 2.8 C is the decomposition of the compo-

nents. First a space filled with gas is being parallel placed with a piece of aerogel.

The effective conductivity is Ke1 and then this piece is in series with the second

aerogel chunk with conductivity of the organic material Ke2 = Ko.

Effective conductivity of n pieces of material with area A1, A2, A3 . . . An and
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Figure 2.8: The model for finding combined thermal conductivity. ( a ) is the 1-D

illustration of the model structure. ( b ) One basic unit has length l. The empty cubic

volume has length l′. ( c ) Decompose the basic unit into two parts which have thermal

conductivity Ke1 and Ke2. The length for the first part L1 is l′ and L2 is (l − l′)The

area A1 is l2 − l′2, A2 is l′2
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conductivity K1, K2, K3 . . . Kn parallel placed together is given by [7]:

AtotalKtotal = A1K1 + A2K2 + A3K3 + . . .+ AnKn parallel (2.15)

On the other hand if it is n pieces of materal with thickness L1, L2, L3 . . . Ln in

series, the effective conductivity is

Ltotal

Ktotal

=
L1

K1

+
L2

K2

+
L3

K3

+ . . .+
Ln

Kn

series (2.16)

Thus, (2.15) and (2.16) help us to find the effective conductivity as following:



Ke1 = Ko

(
l2−l′2

l2

)
+Kg

l′2

l2

Ke2 = Ko

l
Keff

= l′

Ke1
+ l−l′

Ke2

f =
(

l′

l

)3
filling fraction

Then the effective conductivity is

Keff =
Ke1Ke2

Ke2f 1/3 +Ke1(1− f 1/3)
(2.17)

The last step here is to find Ko, thermal conductivity of organic material,

from the thermal conductivity of aerogel. The conductivity of aerogel, Ka =

0.003 W/mK, is measured in vacuum. In other words Ka equals to Keff when

pressure is zero (Kg = 0) Plug in Kg = 0 into (2.17) and solve for Ko.

Ko = Ka
1 + f − f 2/3

1− f 2/3

Finally we found the expression of the effective conductivity as a function of filling

fraction, conductivity of methane gas and conductivity of aerogel.

Keff =
K2

a ·
(
1 + f − f 2/3

)2
+Kg ·Ka · f 2/3 ·

(
1 + f − f 2/3

)
Ka ·

(
1 + f − f 2/3

)
· f 1/3 +

(
1− f 1/3

)(
1− f 2/3

)(
Ka ·

(
1 + f − f 2/3

)
+Kg · f 2/3

)
(2.18)
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Figure 2.9: Effective thermal conductivity Keff at different filling fraction f. One is

calculated at temperature T = 112K. The other is at 800 K. Ka is aerogel ther-

mal conductivity. Kg is the methane gas thermal conductivity, also at two different

temperatures, 112 K and 800 K.

Figure 2.9 is the plot of thermal conductivities of aerogel, methane gas and

the combination of the two. When the filling fraction is zero (that is no pores, no

empty spaces in aerogel), the effective conductivity is just that of aerogel. And

when the filling fraction is close to one, the effective conductivity becomes the

sum of the gas and aerogel conductivities.

Now we know the mathematical formulas to describe the particle diffusion

and heat conduction. The final piece before we can do the simulation is the heat

involved when liquid particles evaporate and become gas particles. That is the

latent heat Lv

∆Q = Lv ·∆Nliq→gas = mc∆T

Evaporated particles show up in both particle diffusion equation and heat con-
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duction equation. This is what makes particle diffusion and heat conduction

equations couple together and hard to solve analytically. If the diffusion coeffi-

cient and thermal conductivity are constants independent of concentration and

temperature, analytical solutions can be found [7].

Involving temperature dependent conductivity and pressure dependent dif-

fusion coefficient, the system in this thesis is more complicated. Furthermore the

system involves two sets of diffusion gas and liquid diffusion, which only make an-

alytical solutions infeasible. In the next chapter simulations methods and results

will be presented.



Chapter 3

Simulations

Chapter Three presents how to simulate the rate of methane loss in a spher-

ical piece of aerogel originally soaked with liquid methane at methane’s boiling

temperature with the outer surface exposed to a high temperature (800K). The

equations to describe the system are derived in 3.1. And then some simplification

is made: Each pore is either filled with only gas or only liquid. The gas diffusion

is the dominant diffusion process so the liquid diffusion process is neglected. Then

the mathematical discriptions and results of the simplified system are presented

in 3.2. Finally these results are compared to the experimental data in the next

chapter.

3.1 Simulations I - Equations

The goal of this section is to describe the system with equations. The key

concepts are the conservation of energy, conservation of particles and the isotherm.

20
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Figure 3.1: One dimensional model. Aerogel has length L, pore size a and the liquid

layer thickness isd.

Originally a spherical chunk of aerogel is saturated with liquid methane at 112 K,

the methane’s boiling temperature, Tb. A constant high temperature (800 K) is

applied to the aerogel surface and represents the flame. The particles diffuse out

in gas and liquid form. In the mean time, liquid methane can evaporate or the gas

can condense depending on the heat available. There are three ways to change

the temperature. First, heat can conduct in through aerogel, gas and liquid to

raise the temperature. Second, temperature can change when the hot or cold

gas and liquid particles move. Finally, through evaporation or condensation, the

temperature also changes. The assumption made here is that local equilibrium is

achieved so the isotherm is always valid [10].

Now lets write the equations down for a one dimensional model (Figure

3.1). Let subscripts a g l and evap represents aerogel, gas, liquid and evaporated

particles. n is the number density. J and JQ are the particle flux and heat flux

respectively.
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Conservation of particle leads to:

∂ng

∂t
= −∂Jg

∂x
+
∂nevap

∂t
(3.1)

∂nl

∂t
= −∂Jl

∂x
− ∂nevap

∂t
(3.2)

Conservation of energy gives:

1

V

∂Q

∂t
= (ρaca+ρlcl+ρgcg

∂T

∂t
) = − ∂

∂x
(JQa+JQl+JQg)−Lv

∂nevap

∂t
−ρgcgυg

∂T

∂x
−ρlclυl

∂T

∂x
(3.3)

The latter two terms represent the heat flow caused by the cold or hot particle

diffusing to regions at a different temperature. υ is the velocity of the particle can

be found from the flux relation J = nυ Rewrite the density ρ to be mass times

number density then ρcυ ∂T
∂x

becomes mcJ ∂T
∂x

However, three equations are not sufficient to solve for four unknowns, ng,

nl, nevap and the temperature T. Thus, isotherm is employed in equilibrium con-

straint, which contributes two more equations. Isotherm is a function z(p, T )

which tells us the thickness of the liquid layer z at any pressure and tempera-

ture.

dng =
(∂ng

∂z

)
dz +

(∂ng

∂T

)
dT (3.4)

dnl =
(∂nl

∂z

)
dz +

(∂nl

∂T

)
dT (3.5)

Here the isotherm p(T, z)/Psat = exp
( −A

T ·z3·(2−z)3
− B

T ·(1−z)

)
(ref eq) is derived

from the spherical model but is used on the cylindrical tube model which the
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diffusion constant is derived based on (Figure 3.1). ng is the number density of

the gas particles in the cylindrical tube. From ideal gas law (Ng = PV
kT

) we know

ng = Ng

Vsample
= p·PsatLπ(a−d)2

kT
1

Vsample
. Vsapmple equals to Lπa2/f for each tube and

let normalized thickness z be z = d
a
. Call this number density function Ig and it

becomes

Ig(T, z) =
p(T, z) · Psat(T )

kTf
(1− z)2 (3.6)

As for liquid, the number density Nl is Nl = Vlρ
m

= V l
z3
1
, z3

1 = m
ρ

the volume

of one liquid particle. Then number density function Il becomes

Il =
Nl

Vsample

=
1

z3
1

(Lπa2 − Lπ(a− d)2)
1

Vsample

=
1

z3
1f

(1− (1− z)2) =
1

z3
1f

(2z − z2)

Il(z) =
1

z3
1f

(2z − z2) (3.7)

In (3.4) and (3.5) need ∂ng

∂z
, ∂ng

∂T
, ∂nl

∂z
, and ∂nl

∂T
. Therefore, we take (3.6)

and (3.7) and find their partial differentiations, Igz, IgT , Ilz, and IlT . Notice that

IlT is zero. The number density of liquid is independent of the temperature.

The way to solve or numerically simulate the system of equations (3.1) ∼

(3.5) is to separate terms with dt to one side of the equation. Thus these equation

becomes
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(Igzdz + IgTdT − dng)/dt = 0

(Ilzdz + 0dT − dnl)/dt = 0

(dng − dnevap)/dt = −∂Jg

∂x
= ∂

∂x

(
Dgas

∂ng

∂x

)
(dnl + dnevap)/dt = −∂Jl

∂x
= ∂

∂x

(
Dliq

∂nl

∂x

)(
(ρaca + ρlcl + ρgcg)dT + Lvdnevap

)
/dt = − d

dx
(JQa + JQl + JQg)− ρgcgυg

dT
dx
− ρlclυl

dT
dx

=
∑
K d2T

dx2 +mCgDgas
dng

dx
dT
dx

+mClDliq
dnl

dx
dT
dx

Finally, turn these equations into a matrix and times the inverse matrix of

the coefficients on both sides. Then we have the information we need to find out

z, T , ng, nl and nevap with a proper time step dt. However, notice that Igz, Ilz and

Igt are functions of T and z which add to the complicity of the inverse matrix.

In the following
∑
ρc and

∑
K represents ρaca + ρlcl + ρgcg and Ka ⊕Kl ⊕Kg

respectively. The ⊕ is the thermal conductivity addition discussed in Chapter

2.2.2.



Igz IgT −1 0 0

Ilz 0 0 −1 0

0 0 1 0 −1

0 0 0 1 1

0
∑
ρc 0 0 Lv





dz

dT

dng

dnl

dnevap


=



0

0

d
dx

(Dgas
dng

dx
)

d
dx

(Dliq
dnl

dx
)∑

K d2T
dx2 +mdT

dx
(CgDgas

dng

dx
+ ClDliq

dnl

dx
)


dt



dz

dT

dng

dnl

dnevap


=



Igz IgT −1 0 0

Ilz 0 0 −1 0

0 0 1 0 −1

0 0 0 1 1

0
∑
ρc 0 0 Lv



−1 

0

0

d
dx

(Dgas
dng

dx
)

d
dx

(Dliq
dnl

dx
)∑

K d2T
dx2 +mdT

dx
(CgDgas

dng

dx
+ ClDliq

dnl

dx
)


dt

(3.8)
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The programming is done through Mathcad (Appendix D). The initial con-

dition is set to be the whole piece of aerogel saturated with liquid methane at

methane’s boiling temperature. It turned out the program ran slowly and failed

to converge when the temperature outside of the aerogel is hotter than 117 K (5K

more than the boiling temperature.) These studies helped us understand how the

system work but a less complex way to carry out the simulation is needed.

3.2 Simulations II - Moving boundary Model

The isotherm (Figure 2.1) implies that the pores in aerogel are almost empty

as long as the pressure is less than 98 % of the saturation pressure. This moti-

vates us to set up the moving boundary model (Figure 3.2). Moving boundary

models are generally applied to the cases which have discontinuous diffusion co-

efficients [7]. For example, in some cases the diffusion rate drops to zero when

reaching to some specific concentration. As the name suggests, the moving bound-

ary model has a boundary beyond which the aerogel is saturated with liquid and

before which no liquid exists. Only the gas particles diffuse and the source of gas

particles come from liquid evaporation at the boundary.

The system is simplified into two regions. In the gas region, the heat con-

ducts in and gas particles diffuse out. At the boundary, liquid particles evaporate

and the temperature adjusts according to the heat flux in and the latent heat

loss. The boundary recedes after liquid particles at the boundary all evaporate.

Finally in the liquid region, only the heat conducts in and no particle moves.

The liquid region is set to have uniform temperature. The pressure in the liquid

part is always maintained at the saturation pressure of the liquid temperature. In
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Figure 3.2: One aerogel tube in the moving boundary model.

other words if there is liquid then the pressure is always at the saturated pressure

Psat. Thus by using the boundary moving model, not only is the diffusion problem

simplified, the isotherm equation is also omitted.

We started from studying a one dimensional model and also study two prob-

lems that can be analytically solved to gain more insight into the model. Then the

simulation is run on a three dimensional model which has radial symmetry. The

results of the 3-D simulation are compared to the experimental data in Chapter

4.

3.2.1 1-D Model

For the simulation in 3.1 we need to keep track of z, T , ng, nl and nevap.

Now the thickness of liquid z is zero in the gas region and one in the liquid

region. Similarly nl is zero in the gas region and saturated in the liquid region.

Therefore we no longer need to know z and nl. Instead only the boundary position
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is needed.

T

To find the temperature T , (3.3) is still valid and can be further simplified.

In the gas region, the terms involving liquid are ignored.

(ρaca + ρgcg
dT

dt
) = (Ka ⊕Kg)

d2T

dx2
)− ρgcgυg

dT

dx

Ka ⊕Kg is exactly Keff (2.18) found in Chapter 2. Also ρgcg is ignored because

the density of gas it is much smaller than the density of aerogel. By ignoring ρaca

it helps to speed up the calculation since the density of the gas ρa is not a fixed

constant. Therefore to simulate the temperature in the gas region, the equation

we use is

dT =
(
Keff

d2T

dx2
+mcgDgas

dng

dx

dT

dx

) dt

ρaca
(3.9)

The temperature at the boundary is obtained differently because the liquid

ist set to have infinite heat conduction, and the temperature in the liquid part is

uniform. Thus heat flux from the gas part comes in and heats up the whole liquid

region.

∆T =
JQA∆t

Mtotal liquid masscl +Maerogelca

=
JQA∆t

(ρlcl + ρaca)A(L− b)

=
JQ∆t

(ρlcl + ρaca)(L− b)

The evaporation only happens at the boundary. The number of particles

evaporated is set to be the number of gas particles diffusing out of the boundary.

The heat lost by evaporation then cools down the liquid.

nevapA∆x = −JgA∆t
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∆T = −Lvnevap = LvDgas
dng

dx

∆t

(ρlcl + ρaca)(L− b)

Hence the temperature change at the boundary is

dTb =
(
−Keff

dT

dx

∣∣
b
− LvDgas

dng

dx

∣∣
b

) dt

(ρaca + ρlcl)(L− b)
(3.10)

ng

The last thing needed to be taken care of is the gas number density ng , but

this is no different than the diffusion equation (3.1). Again nevap is zero in the gas

region. At the boundary the gas number density depends on the pressure which

is set to be the saturate pressure at the temperature. Therefore the conduction

equation which controls the temperature still couples with the diffusion equation

and can affect the diffusion rate.

Gas diffusion equation is dng = d
dx

(Dgas
dng

dx
) · dt. Now the diffusion constant

Dgas is simplyDgas = −pa2

8ηg
. Different than stated in (2.7) since the liquid thickness

z is always zero. Furthermore since in the diffusion equation, Dgas is a function

of pressure we changed dng

dx
in to 1

kT
dp
dx

by the ideal gas law to make dng a function

of pressure too. The ideal gas law is always valid in the gas region to so we only

need to keep track of either ng or p. By doing this, it is easier to program the

simulation.

To conclude, the simulation flow is summarized in Table 3.1. The computer

code is in Appendix C for reference.
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Table 3.1: Equations for simulating 1-D moving boundary model

boundary is at b

Gas dng = d
dx

(Dgas

kT
dp
dx

) · dt

dnl = 0

dT =
(
Keff

d2T
dx2 +mcg

Dgas

kT
dp
dx

dT
dx

)
1

ρaca
· dt

p = nkT

Boundary ng = p
kT

dnl = −nevap = Dgas

kT

dng

dx

∣∣
b

1
dx
· dt

dT =
(
−Keff

dT
dx

∣∣
b
− Lv

Dgas

kT
dp
dx

∣∣
b

1
dx

)
1

(ρaca+ρlcl)(L−b)
· dt

p = Psat(T )

Liquid ng = ng|boundary

dnl = 0

dT = dT |boundary

p = p|boundary
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Figure 3.3: 1-D moving boundary model result. Position of the boundary as a function

of time. Red line is the simulation ( the total length L = 5cm is divided into twenty

divisions so the boundary moves like steps. Blue line is the function fit to the simulation

result.

Results

Figure 3.3 shows that a five cm long one dimensional model takes 16790 sec-

onds to empty out the liquid methane. And the boundary position is proportional

to square root of time. The fact that the boundary position is proportional to

square root of time deserves further discussion. In the next section two analytical

solvable problems are presented to find the relationship between time and the

position of the boundary, or the relationship between length L and the time it

takes to empty.
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3.2.2 1-D Pure Diffusion Analytical Solutions

Two cases are analytically solved in Chapter 3.2.2 and 3.2.3. 1) Diffusion

Limit Model and 2) Conduction Limit Model. It turned out the boundary moves

as a square root function of time if there is only pure diffusion. The result coincides

with the result of the simulation. This result also implies that the times scales as

the square of the length so a tube of aerogel twice as long as this one will take four

times longer to empty. In the Diffusion Limit Model, there is only diffusion caused

by a fixed pressure difference inside and outside the aerogel with no temperature

change in the system. In other words the heat needed to evaporate the liquid is

arbitrarily taken to be zero. Therefore the diffusion rate controls the boundary

moving rate. In case 2) Conduction Limit Model, whatever evaporates diffused

out immediately. The time it takes to conduct the heat in to evaporate all the

liquid is studied. Again the liquid conductivity is set to be infinite so the whole

liquid region is at the same temperature.

Figure 3.4 is the illustration of the Diffusion Limit Model. The pressure

outside the aerogel is P0 and the pressure in the liquid region is Ps, the saturated

pressure at the given temperature. Initially the whole aerogel is saturated with

liquid so the boundary is at x = 0. The first step is to find Ṅ in one aerogel tube.

Assuming the volume of the sample is V = AL. The total number of aerogel

tubes in the system is ALf
πa2L

, where f is the filling fraction and a is the pore size.

Then we can figure out the total number diffusion rate in the system and find the

boundary position as a function of time.

From Poiseuille’s Law and the ideal gas law, one can find Ṅ .

V̇ = −πa
4

8η

dp

dx
Poiseuille’s Law
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Figure 3.4: One dimensional pure diffusion model. The aerogel has area A and length

L. Heat and gas particles only conducts or diffuses in from the open end x = 0. Pressure

outside the aerogel is Po and inside is at saturation pressure Psat. Po and Psat are fixed

constants.

Ṅ = V̇
p

kT

dp

dx
= − 8η

πa4

kT

p
Ṅ

Integrate from the open end to x, and then we get Ṅ when the boundary is at

x. ∫ ps

p0

pdp =

∫ x

0

−8ηkT

πa4
Ṅdx

Ṅ = − πa4

16ηkT

p2
s − p2

0

x

Ṅtotal = − πa4

16ηkT

p2
s − p2

0

x
· Af
πa2

Then we can find the rate of boundary moving ẋ. Let z3
1 be the volume of one

liquid particle (z3
1 = m

ρ
).

ẋ = −Ṅtotal
z3
1

Af
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dx

dt
=

z3
1a

2

16ηkT

p2
s − p2

0

x

Let β =
z3
1a2

16ηkT
(p2

s − p2
0) and integrate from time zero to time tb, the time it takes

move the boundary from 0 to xb.∫ xb

0

xdx =

∫ tb

0

βdt

x2
b

2
= βtb

x(t) =
√

2βt β =
z3
1a

2

16ηkT
(p2

s − p2
0) (3.11)

It turns out the boundary moves as a square root function of time if there is

only pure diffusion. The result coincides with the result of the simulation. This

result also implies that the times scales as the square of the length so a tube of

aerogel twice as long as this one will take four times longer to empty. The next

step is to study the other limit, Conduction Limit Model and find the correlation

between the length and time.

3.2.3 1-D Pure Conduction Analytical Solutions

Conduction is similar to diffusion, so the result also has the similar property.

However, conduction problem is a little more complicate. Figure 3.5 illustrates

the model. Initially the aerogel is saturated with liquid and is at its boiling tem-

perature. Outside of aerogel is maintained a temperature T0. Heat can conduct

into aerogel to 1) evaporate the liquid, 2) heat up the gas and, 3) heat up the

liquid. Therefore this is more complicate than pure diffusion case. However, if we

assume all the heat that conducts into aerogel only evaporate the liquid then we

can show that this no different than the diffusion problem.
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Figure 3.5: One dimensional pure conduction model. The aerogel has area A and

length L. Heat and gas particles only conducts or diffuse in from the open end x = 0.

Temperature outside the aerogel is To and inside is at boiling temperature Tb. To and

Tb are fixed constants.

Heat evaporates liquid

Ṅ , Ṅtotal and ẋ are needed to solve the problem. At the boundary the heat

flux is

JQ =
dQ

dt

1

A
= −KdT

dx

Q̇ = −KATb − T0

x

Ṅ =
Q̇

Lv

=
KA

Lv

T0 − Tb

x
(3.12)

Ṅtotal = Ṅ
Af

πa2

ẋ = Ṅtotal
z3
1

Af
=
Kz3

1

Lvf

T0 − Tb

x
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Let β∗ be

β∗ =
Kz3

1

Lvf
(T0 − Tb)

Then the solution to this problem is the same as the solution for the Diffusion

Limit Case (3.11)

x(t) =
√

2β∗t β∗ =
Kz3

1

Lvf
(T0 − Tb) (3.13)

Heat evaporates liquid and heats up gas particles

Now we assume the heat conducts in not only to evaporate the liquid but also

to heat up the gas. The liquid temperature still remains at the boiling temperature

Tb. Assume the particle diffusing rate Ṅ is a constant. From the heat conduction

and boundary condition, Ṅ can be found. Let the heat conducting in (2.14) equal

to the heat used to heat up gas particles and solve for T .

Q̇1 = K d2T
dx2Adx heat conduction

Q̇2 = mcgṄdT = mcgṄ
dT
dx
dx heating up gas

Q1 +Q2 = 0

d2T

dx2
= −mcṄ

AK

dT

dx

T (x) = −c1
KA

mcṄ
exp(−mcṄ

KA
x) + c0

The boundary condition gives

T (0) = T0 − c1
KA

mcṄ
+ c0 = T0 (3.14)

T (xb) = Tb − c1
KA

mcṄ
exp(−mcṄ

KA
xb) + c0 = Tb (3.15)
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At the boundary the heat matches with the heat for evaporation.

Q̇|b = LvṄ |b

Q̇ at the boundary is JQA = −KAdT
dx

LvṄ = −KAdT
dx

∣∣
xb

= −KAc1 exp(− mcṄ

KAxb

) (3.16)

Finally, use (3.14) ∼ (3.16) to find Ṅ

Ṅ =
AK

mcxb

ln
(
1 +

mc

Lv

(T0 − Tb)
)

(3.17)

To double check the answer, let T0 → Tb then ln
(
1 + mc

Lv
(T0 − Tb)

)
→

mc
Lv

(T0−Tb) which makes Ṅ the same as the pervious part (3.12). In the pervious

part there is no gas heating which can also be interpreted as the gas temperature

is closed to the surface temperature.

It is desired to write (3.17) with a constant K∗ so that Ṅ is of the same

format as (3.12). If we can do so then the solution to this model is also of the

form x(t) =
√

2βt

Ṅ = K∗ A

Lv

T0 − Tb

x

K∗ =
KLv

mc(T0 − Tb)
ln

(
1 +

mc

Lv

(T0 − Tb)
)

x(t) =
√

2β∗∗t β∗∗ =
K∗z3

1

Lvf
(T0 − Tb) (3.18)

.

There is one more condition to be considered to complete this section. That
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is the heat conducs in to heat up the gas and when it reaches the boundary, it not

only evaporates the liquid but also heats up the liquid. Then the liquid part is no

longer at a fixed temperature Tb. This will change the particle diffusing rate Ṅ .

Then the temperature change at the boundary and moving boundary make the

problem complicated. We cannot predict if the boundary moving rate will still

scale exactly as the square root of time. With one more variable Tb, unless one

more condition is specified, the problem is not analytically solvable.

To conclude this section, we found that the time it takes to empty the liquid

usually is proportional to the square of the sample length. This feature is also

found in the 1-D model in 3.2.1.

x =
√

2βt T ime =
L2

2β

Furthermore, by comparing 1
β

and 1
β∗

, we can find which is the slower process.

1
β

is of the 107 order and 1
β∗

is of the 109. Therefore diffusion is a faster process and

conduction is the slower one which dominates the time it takes to empty liquid

out.

3.2.4 3-D Model

The 3-D model is an aerogel sphere with 5 cm radius. The temperature

is 800 K uniformly throughout the surface. The model is radial symmetric, so

the boundary position, temperature and pressure at the same distance from the

center are the same. Therefore the simulation is similar to the 1-D model only

with the partial differential changed to gradient and divergence. In this section,

some tricks to make the simulation more efficient are introduced. And finally the

results of the simulations are presented and discussed.
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Figure 3.6: Three dimensional model. A spherical aerogel with radius 5 cm.

In thee dimensions, the flux and diffusion equations become

~J = −D~∇n

∂n

∂t
= −~∇ · ~J

Since the model is radial symmetric, there are only radial terms in the equa-

tion.

Jr = −D∂n
∂r

∂n

∂t
=

1

r2

∂

∂r

(
r2D

∂n

∂r

)

Dimensionless Simulation

It is time to discuss how to program the simulation. First it is desired

to make the simulation in a scaled space and time so the simulation runs on

dimensionless quantities. From scaling the unit out, the fact that time scales as

length square can also be found here. Table 3.1 has all the equations needed to

be worked on.

First, define dimensionless variables τ z, p̃, T̃ , ñ, and η̃.
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Figure 3.7: The indices in the simulation. r is the radius and z is the spatial variable.

J and JQ are gas particle flux and heat flux respectively.

r = (L− z) L
N

The radius is divided into N steps.

z is the indix from 0 ∼ N (Figure 3.7)

p= p̃ P0 Pressure P0 = 1atm = 101300 Pa

T = T̃ T0 Temperature T0 = 293 K room temperature

ng = ñ nNTP Gas number density nNTP = P0

kT0
= 2.5× 1025 #/m3

η(T ) = η̃(T0) η0 Gas viscosity η0 = η(T0) = 1.105× 10−5 Pa s

η(T ) = 4.725·10−9·T 1.622

1+T/89.051
Pa s

Keff (T ) = K̃(T0)K0 Effective thermal conductivity K0 = Keff (T0)

Dgas = D̃ D0 Diffusion constant D0 = P0a2

8η0
; D̃ = p̃

η̃

t= τ · γ Time γ is the time scale.

Start with the gas particle diffusing equation and rewrite with dimensionless

variables. Notice that when changing d
dr

to d
dz

there is a −1 coming from dr
dz

=
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−1.

dng =
1

r2

d

dr

(
r2Dgas

kT

dp

dr

)
· dt

nNTP dñ =
1

r2

d

dz L
N

(
r2 D0p̃

η̃kT0T̃

P0dp̃

dz L
N

)
· dτγ

Equate the constants on both sides and then we get the rescaled function.

dñ =
1

z2

d

dz

(
z2 p̃

η̃T̃

dp̃

dz

)
· dτ (3.19)

γ =
L2

D0N2
(3.20)

Since (3.19) runs simulation on arbitrary size of aerogel, the real time to

empty the aerogel only depends on γ. For example, if an initial condition takes

100 time steps to empty out the liquid inside the real time is 100γ = 100 L2

D0N2 and

thus a 10 cm aerogel sphere takes four times longer to empty than a 5 cm aerogel

sphere. The time scales as square of the length is very important.

Next is the conduction equation, which the same method is applied.

dT̃ =

(
c1 ·

1

z2

d

dz

(
z2K̃

dT̃

dz

)
+ c2 ·

p̃

η̃T̃

dp̃

dz

dT̃

dz

)
· dτ (3.21)

c1 =
K0

D0 ρa ca
c2 =

mcg nNTP

ρa ca
(3.22)

One needs to take care of the temperature equation at the boundary carefully

because the model is spherical. The energy change per time dQ
dt

is
(
volume·(ρc)dT

dt

)
.

The heat out of the boundary by conduction is
(
JQ · area

)
and by evaporation is(

Lvnevap · area dx
)
.

(ρaca + ρlcl)
4

3
πr3 · dTb

dt
= −Keff

dT

dr

∣∣
b
· 4πr2 − Lv

Dgas

kT

dp

dr

4πr2dr

dr

dT̃ |b =
(
c3K̃

dT̃

dz
+ c4

p̃

η̃T̃

dp̃

dz

)
· 1

N − z
· dτ (3.23)
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c3 =
3K0

(ρa ca + ρl cl)D0

c4 =
3nNTP Lv

T0 (ρa ca + ρl cl)
(3.24)

Therefore Table 3.1 becomes Table 3.2 in a three dimensional system. For

simplicity the˜ is omitted. The simulaiton is run in Mathcad and the program is

included in Appendix B.

Table 3.2: Equations for simulating 3-D moving boundary model

The spatial index z runs from 0 to N. 0 is the open end.

Boundary is at b; b starts at z = 2.

Gas dng = 1
z2

d
dz

(
z2 p

ηT
dp
dz

)
· dτ treal = γ · τ

dnl = 0 γ = L2

D0N2

dT =

(
c1 · 1

z2
d
dz

(
z2K dT

dz

)
+ c2 · p

ηT
dp
dz

dT
dz

)
· dτ c1 = K0

D0 ρa ca

p = nkT c2 = m cg nNTP

ρa ca

Boundary ng = p
kT

dnl = −nevap = p
ηT

dp
dz

1
dz
· dτ

dT |b =
(
c3K

dT
z

+ c4
p

ηT
dp
dz

)
· 1

N−z
· dτ c3 = 3 K0

(ρa ca+ρl cl) D0

p = Psat(T )/p0 c4 = 3 nNTP Lv

T0 (ρa ca+ρl cl)

Liquid ng = ng|boundary

dnl = 0

dT = dT |boundary

p = p|boundary

The entire simulation is then dimensionless. The constants c1, c2, c3, and c4

are all dimensionless. We can run the simulation once and scaled it for different

sizes of aerogel through the time constant γ. On the other hand, what can slow

the simulation are the pore size a and the number of spatial steps N . a is in the

term of diffusion constant D0, so a bigger pore size not only makes the time step
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small but also make the heat conduction terms c1 and c3 smaller relative to the

diffusion term. (The coefficient for the diffusion term is 1.) In this thesis, the

pore size is set to be 100 nm.

There is nothing we can do with the pore size a but we can run a trick to

make the time to run the simulation depends less on N . For a good and more

accurate simulation result, the steps should be as small as possible. However, the

time it takes to run the same simulation for N = 10 and N = 100 is 102 times

more. To improve on this, a second index M is going to be introduced in the next

subsection.

Speed Up The Simulation

To speed up the simulation, the length of the gas part is always divided into

M steps. For example, let M be 10. The whole radius is divided into 50 steps

(N = 50), one step ∆r is L
N

wide. When the boundary is at z = 2, one simulation

step in the gas region is 2∆r
M

= L
N
· 2

M
wide, which is smaller than ∆r. Then when

the boundary is at z = 30, one simulation step in the gas region is L
N
· 30

M
, which

equals to 3∆r.

There are two reasons why a second index is good. First of all, the most furi-

ous reactions happens at the beginning of the simulation, when the temperature in

aerogel is 700 K lower than the surface. Before the second index is introduced, this

is when the simulation is done by the least number of steps, since the gas region

is small. Therefore, if at the beginning gas region is divided into smaller steps,

the simulation can be more accurate. On the other hand, when the boundary is

further away from the surface, the temperature and the pressure distribution are

approaching their steady states. The diffusion and conduction slow down. Before
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the second index is introduced, the simulation is running through a lot of steps

when not much is happening.

If the gas region is only divided into M steps, the simulation runs more effi-

cient. Since the main parts in the simulation are the gas region and the boundary,

it is better to have good step sizes for the gas region. The only things change in the

liquid part is the pressure and the temperature, but these two quantities are the

same as at the boundary. Therefore by keeping track where the boundary is and

the pressure and the temperature at the boundary, we have all the information of

the liquid region.

The array size this simulation needs is M+2. i = 0 represents the surface.

i = 1 ∼ M are the gas region. And i = M + 1 is the boundary. In each ith

array there is another array with size 6. The second array keep tracks of the real

time, boundary position, temperature, pressure and the gas and liquid number

densities. The Mathcad program is provided in Appendix B.

The time constant γ changes whenever the step size changes, but the result

obtained by this method can still scale to different length L. The results are

presented in the next subsection.

Simulation Results

Initial Conditions: A sphere of 5 cm radius aerogel saturated with liquid

methane at 112.3 K.

External Conditions: Pressure at the surface is fixed at 1atm. Temperature

at the surfaces is fixed at 800 K.
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Figure 3.8: 3-D simulation result: Boundary position v.s. time. 0 is the open end and

5 is the center. It takes 6749 seconds to empty the liquid methane.

Simulation Result: Figure 3.8 to Figure 3.16. It takes 6749 seconds to empty

the liquid methane. The temperature in the liquid raises about 22 K during the

first 60 seconds and remains there with little fluctuations.

The boundary moves similarly to the rectangular model at the beginning,

proportional to the square root of time. But at the end it speeds up and becomes

proportional to the cubes of time (Figure 3.8). Then we convert the boundary

curve to the liquid weight curve which is scaled to its initial weight. Although it

takes 1.8 hours to empty the liquid methane, at the first hour the aerogel already

loses 90% of the liquid. (Figure 3.9)

Figure 3.10 gives a good idea of what happens in the aerogel. The tem-

perature quickly heats up to 133 K and remains there. This means after te first

60 seconds the heat which conducts to the boundary only evaporates the liquid.
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Figure 3.9: 3-D simulation result: Liquid weight v.s. time. The liquid methane

weight is scaled to its initial weight. At 840 seconds, 50% of the liquid remains. At

2520 seconds, 20% of the liquid remains. At 3600 seconds, 10% of the liquid remains.

And a balance between heat conduction and particle diffusion is reached. Every

time the boundary shifts, the system equilibrates the pressure and temperature

distribution. This explains the fluctuations on the temperature curve. Figure 3.11

shows in the first 5 minutes of the simulation, the boundary movement matches

with the peaks of the temperature.

Figure 3.12 and Figure 3.13 further show the temperature and pressure dis-

tribution in the M scaled spatial steps of the gas region. For time at 2000, 3000

and 4000 seconds, the pressure and temperature changes are small. Only after

5000 seconds, when the boundary is at 3.5 cm away from the surface and the

boundary starts to quickly move toward the center (proportional to time cube),

the pressure in the gas region quickly drops. Figure 3.14 and Figure 3.15 are

the temperature and pressure profile scaled to the real spatial steps. We can see
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Figure 3.10: 3-D simulation result: Liquid temperature v.s. time. At 60 seconds, the

temperature reaches 133.58 K and fluctuates between 134.29 K and 132.24 K.

Figure 3.11: 3-D simulation result: Liquid temperature and boundary position v.s.

time for the first 300 seconds of the simulation. The fluctuation period matches with

when the boundary moves.
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how the aerogel heats up and how the pressure inside changes as the boundary

moves.

Figure 3.12: 3-D simulation result: Temperature Profile. Temperature distributions

at different times show the change throughout time inside the gas region. The gas region

length is rescaled so M = 11 is the gas-liquid boundary.

Despite the fact that the liquid temperature raises only 22 degrees, which

is still more than 600 degrees colder than the surface, the pressure inside the

liquid is at the saturation pressure of that temperature. Therefore, saturation

pressure around 133 K is more than 4 atm. We doubt if aerogel can sustain a

big pressure that is 4 atm. In the following a different simulation is run with the

aerogel 3 µm pore size instead of 0.1 µm. The new simulation results in a small

pressure increase inside the aerogel (Figure 3.17). This pore size is determined by

comparing the gas diffusion coefficient in Adam Papallos thesis, Aerogel: A Study

in Elastic Moduli and Diffusion [3]. In Adams thesis the gas diffusion constant

is

Dadam = 7.2P × 10−8 + 5.67× 10−4 m2/s

By equating the coefficient of P with the coefficient of our gas diffusion constant
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Figure 3.13: 3-D simulation result: Pressure Profile. Pressure distributions at different

times show the change throughout time inside the gas region. The gas region length is

rescaled so M = 11 is the gas-liquid boundary.

a2

8η
, a equals to 3.18 µm. (η = 17.62 µPa s @ 294 K, 1 atm)

With a bigger pore size, diffusion is much faster and the internal pressure is

smaller. A change in the pore size, however, changes the time scale. A simulation

with a = 3um takes 900 times longer than the simulation with a = 0.1um.

Luckily we learned in Chapter 3.3 that the aerogel drying process is domi-

nant by the conduction rate so the faster diffusion rate has little impact on the

simulation except for the internal pressure distribution. The simulation result

shows that with a = 3µm it takes the same amount of time (6750 seconds) to

empty the liquid. The boundary moving rate turns out to be identical with the

simulation on pore size being 100 nm. On the other hand, the liquid temperature

rises at most 0.21 degree and the corresponding saturation pressure is only 1.017

atm.

Unfortunately the internal pressure cannot determine the actual pores size.

The pores in aerogel need not to be spherical and be of a uniform size. The pore
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Figure 3.14: 3-D simulation result: Temperature Profile. Temperature distributions

at five different times are put together to show the change throughout time at different

position inside aerogel. The dots on each curve indicate the boundary positions. At x

= 0, T is the fixed surface temperature 800K.

Figure 3.15: 3-D simulation result: Pressure Profile. Pressure distributions at five

different times are put together to show the change throughout time at different position

inside aerogel. The dots on each curve indicate the boundary positions. At the surface,

pressure is fixed at 1 atm.
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Figure 3.16: 3-D simulation result: Liquid Pressure v.s. time. This result is obtained

by calculating the saturation pressure of the liquid temperature (Figure 3.10). The

pressure fluctuates between 4.03 atm and 4.56 atm.
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size in our simulation represents an effective pore size that describes the system.

How well the pores connect to other pores is also included in this effective pore

size in the simulation. Therefore, we cannot determine the size of the pores by

just comparing the diffusion constants or by comparing the pressures.

Figure 3.17: Pore size 3 µm simulation result: Liquid pressure and temprature v.s.

time. The temperature fluctuates between 112.33 K and 112.51 K. The pressure fluctu-

ates between 1.002 atm and 1.017 atm.

The most important result of the simulation is the liquid weight curve be-

cause this can be compared with the experiment. In the experiment the weight of

the aerogel is recorded while the aerogel is burning. By comparing the two curves,

we can tell how well the simulation describes the system.
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Experiments

4.1 Setup of the Experiments

The experiments used six aerogel samples with different sizes and shapes.

Two were placed on a plate and the other four were hung. Figure 4.2 is an

illustration of the samples.

Apparatus:

A balance with an arm 10 times the distance than the other arm was setup. The

short arm was connected to a force meter. The force meter measured between 0

and 10 N and it was connected to the computer which recorded time and force.

The long arm was used to hang the aerogel sample.

Preparation of the methane soaked aerogel sample:

A cold bath of liquid nitrogen was prepared. A chunk of aerogel was placed in a

test tube which was connected to methane gas. Then the test tube was lowered

into the cold bath and the methane gas started condensing. When liquid methane

52
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Figure 4.1: The apparatus and a burning aerogel. The aerogel was burning on the

long arm of a balance which was connected to the force meter.



Chapter 4. Experiments 54

completely covered the aerogel chunk, the sample was ready.

The methane soaked aerogel was hung on the apparatus through a long hook.

The sample was set on fire while the force meter recorded the time and weight loss.

The experiment ended when the flam went out and the piece of aerogel started

smoldering.

4.2 Results of the Experiments

The results are presented as a plot of scaled weight versus time in Figure 4.3.

The weight difference between the beginning and the end of the experiment is set

to be the total liquid weight which is the denominator of the scaled weight. The

weight at each time minus the weight at the end is the remaining liquid weight,

also the numerator of the scaled weight.

The time each sample took to burn is indicated in Figure 4.2. Since each

sample has a different size and a different shape, the burn off time is expected

to be different. The fact that time scales with the square of the length helps

with comparing the data. In a spherical model, the time it takes to burn is

proportional to the radius square. The characteristic length of other geometry

is studied in order to compare the data sets. This length is called the effective

length, Leff .

The effective length is defined by the analytical solutions to the diffusion

problem with a constant diffusion coefficient D.

∂n

∂t
= D∇2n (4.1)
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The solution for a sphere with radius R with boundary condition ψ0(R) = 0

is:

Ψ(r, t) = φ(t)ψ(r) φ0(t) = e−λ0 t ψ0(r) =
sin(k0r)

k0r

λ0 = k2
0D =

π2D

R2

The characteristic time scale τ in this solution is 1
λ0

, so define the effective length

square L2
eff for a spherical model to be R2, which is proportional to 1

λ0
.

The solution for a rectangular block model with sides Lx, Ly and Lz has λ0

equaling to Dπ2
(

1
L2

x
+ 1

L2
y

+ 1
L2

z

)
. The effective length is

(
1

L2
x

+ 1
L2

y
+ 1

L2
z

)−1
2 . If one

side is much shorter then the other two, the time scale is dominant by the shortest

length. This is intuitive because it is the easiest to diffuse out from the shortest

path.

Finally, the solution for a cylinder with radius S and length L has λ0 equaling

to Dπ2
( x2

0

π2S2 + 1
L2

)
where x0 is the first zero in the zero-th order Bessel function,

x0 = 2.43. So the effective length is
( x2

0

π2S2 + 1
L2

)−1
2 With this information, the

effective length of each sample is calculated. The time of each data is divided by

their effective length square so the data sets can be compared.

The burn off results are shown in Figure 4.3. Sample 1 and Sample 6 are

burned from a plate while the others are directly hung from the arm of the balance.

The noise of the data is caused by the sample swinging while the data was taken.

It is not easy to take data with low noise because the long hook swung after the

samples were placed. Once the aerogel sample was removed from the cold bath,

the methane started evaporating and the water molecules started condensing onto

the aerogel surface, so there is no time to wait for the swinging to stop. The

experimental result for Sample 1 is obtained by video taping Sample 1 burning
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Figure 4.2: Aerogel samples. The sizes of the aerogel samples are indicated next to

each graph. Leff is the effective length of the sample and τ is the time each sample took

to burn.

on a scale with a can separating the scale and the flame. Therefore there was no

swinging which caused the noise. However, it was not efficient to transcribe the

reading of the scale from the recording of the video camera.

The results for Sample 3, 4 and 5 match relatively well with one another.

Since the noise on Sample 2 and 6 are big and the result for Sample 1 is obtained

by another method, the average curve is taken by the average of Sample 3, 4,

and 5 with the scaled time. The average effective length is 0.92 cm. The average

burning scaled time is 186 seconds/Leff 2.

To compare with the simulation, the average data and the simulation data

were plotted on Figure 4.4. The results match until the weight is 40% of its origi-

nal. Afterwards the simulation weight losses much slower than the experiment. If

compared by scaling time with the total time, then the weight losing rate of the

simulation is faster than that of the experiment at the beginning.
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Figure 4.3: Burn off results of six samples. The fraction of the total liquid weight

and time were plotted. The samples’ shapes and sizes are indicated in Figure 4.2. The

results for sample 1, 2 and 6 are in A. and the results for 3, 4 and 5 are in B.
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There are discrepancies between the experimental result and the simulation.

Few things might affect the experimental results. First, the preparation affects the

result due to the methane evaporation and the water molecules in the air started

condensation onto the aerogel after the sample was removed from the cold bath.

Although this only cost at most 30 seconds, it was already 20% of the time burn

off time. Second, the edges of the aerogel samples began smoldering before the

end of the experiments. When the aerogel itself started smoldering, the weight

differences recorded were not purely from the loss of liquid methane. The above

two are explanation to the discrepancies between the simulation and experimental

results. We could eliminate theses two causes by other experimental setups. On

the other hand, there is one consideration that could be included in the simulation.

This might help obtain a model that better describes the system.

The simulation is run under a uniform temperature on the surface. When the

aerogel is burning, however, the temperature around the surface is not expected

to be the same. If there is a temperature distribution on the surface, the liquid

inside the aerogel will have different temperatures. Then the pressure inside the

liquid is not uniform. The pressure difference might cause the liquid to move and

changed the simulation result. In the next chapter, we are going to discuss how the

temperature distribution on the surface affects the boundary moving rate.
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Figure 4.4: Averaged experimental data plot and simulation data plot. The y-axis

is the liquid weight over the initial liquid weight. In A the x-axis is the time divided

by L2
eff . The average data ends at effective time being 186 and the simulation ends at

effective time bein 269. In B the time is scaled to the total burn off time.
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Discussion

This chapter is about two features found after comparing the simulation

with the experimental result. First is the length square relationship with the

desorption time. The second is about the discrepancies between the simulation

and experimental results. More experiments and simulation models have been

done to address the latter issue.

5.1 Relationship between Time and Length

The feature that the desorption time scales with the length square has

showed up in the simulation result of the 1-D Boundary Moving Model, and in the

analytical solutions to the Pure Diffusion Model and Pure Conduction Model. In

the 3-D model, the time constant γ is also a function of the length square. Thus,

if the experimental results also support this feature, we can easily find the burn

off time of a different chunk of aerogel.

60
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Figure 5.1: Burn off time v.s. Effective Length. The burn off time of the samples

and their effective lengths are plotted in this graph. The dash line is the function

t(x) = a · x2, where a is an constant. The prediction that the time scales with the

square of the length matches well with the experimental results.
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Comparing the burn off data by finding the effective length turns out to be

successful. Figure 4.3 successfully put all the data sets together by scaling the

time with the effective length square. Furthermore, Figure 5.1 plots the burn

off time and the effective length of each sample to compare with the prediction

t(x) = a · x2. t is the burn off time, x is the effective length (cm) and a is a

constant. a equals to 180.7 fits the curve. (a is 170.6 if trying to fit to all data

points, a is 180.7 if excluding Sample 1 and 6 which were burnt on a plate.) To

conclude, the feature that the time is proportional to the length square is also

found in the experiment.

5.2 Temperature Distribution on the Surface

Because the simulation results and the experimental results have some dis-

crepancies, we think the temperature difference on the surface might be crucial.

The temperature differences on the surface cause the differences in liquid tempera-

ture at the boundary. Thus the saturation pressure at the liquid is different. With

pressure differences the liquid can flow around and the liquid boundary moves by

means other than evaporation.

5.2.1 Improved 1-D Model

The 1-D moving boundary model is studied again. Figure 5.2 is an illustra-

tion of Liquid Moving Model. The model is the similar to the boundary moving

model in Chapter 3 but there are two open ends, x = 0 and x = L. The two ends

are applied with different surface temperatures. Furthermore, the liquid thermal

conductivity is considered in this model so the temperature in the liquid region
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Figure 5.2: One aerogel tube in 1-D Moving Boundary Model. This model has two

open ends, x = 0 and L, and two boundaries, xL and xR. The gas particles diffuse out

through the two ends. The open ends have two different temperatures. The heat con-

ducts in through the two ends as well. The number of liquid particles at the boundaries

can decrease or increase by evaporation or by viscous flow.

is not uniform. The combined aerogel and liquid thermal conductivity Kl⊕Ka is

obtained by the same way as Kg ⊕Ka (Chapter 2.2.2).

This model has two boundaries, XL and XR. The gas particles in two gas

regions only diffuse out through the open end that is closer to the region. At the

boundary the liquid particles can evaporate or move toward the boundary which

has lower pressure.

The Poiseuille’s law (2.6) is used to calculate the liquid flux as it is used to

calculate the gas particle flux. The pressure difference in (5.1) is the difference of

the pressure at two boundaries and the distance is the length of the liquid region

XR −XL

Jliq =
ρla

2

m 8ηl

∂p

∂x
(5.1)
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With this information the simulation is built. Detail of the programming is

shown in Appendix E. The results are shown from Figure 5.3 to Figure 5.5. If

there is no temperature difference at the cold and hot open end, the liquid does not

move. The simulation performs as if two 1-D Moving Boundary Models sticked

back to back. In Figure 5.3, the red line shows that if the temperatures on both

open ends are the same, the boundary ends at the center of the sample (2.5 cm).

Figure 5.3 shows that when there is a 50-degree difference, the desorption takes

longer than when there is no temperature difference. But when the temperature

difference is 100 K, it takes shorter amount time to desorb.

Figure 5.3: Three sets of boundary position v.s time. 0 cm is the open end with colder

external temperature. 5 cm is the open end with 800 K. The red line represents the

boundary of the simulation with both ends have temperature 800K. The liquid does not

move so the last boundary is at the center of the aerogel sample. The blue line is with

the colder end at 750 K. It takes longer than the red one and the boundary ends closer

to the cold end. The green line is with the colder end at 700 K. It takes shorter time

than the red one. The boundary ends even closer than the blue one.
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Figure 5.4: Total time and the last boundary position v.s the cold end temperature.

The simulation runs from 112.3 to 800 K to show the relationship between the desorption

time and the cold end temperature. It also shows the relationship between the ending

boundary position and the cold end temperature. The dash line at 0.375 cm is the

initial boundary at the cold end.

The explanation to this is that when there is a small temperature difference,

the pressure difference at the two liquid boundaries is small, so little of the liquid

is pushed to the cold boundary. At the same time since one end is colder, the

desorption takes longer. Therefore the total time the sample takes to dry is longer

then the case with no temperature difference at the boundary. In the other case,

when the temperature difference is big, the rate of liquid being pushed to the

boundary compensates for the rate of evaporating. The total time the sample

takes to dry is then shorter. This result is confirmed in Figure 5.4. In Figure 5.4

the temperature at the cold end runs from 112.3 to 800 K while the hot end is

always 800 K. For one end at 112.3 K, it only takes 40 % of the time of the case

with no temperature difference. The liquid boundary is pushed against the cold
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open end. From the simulation we know that besides a transition temperature

that is close to the hot end temperature, the desorption rate is much faster.

Figure 5.5: Liquid weight v.s time. The results of two simulations in which the tem-

peratures of the cold ends are 800 K and 700 K. The weight is presented as Weight/Total

Weight. In A the red line ends at 4446 seconds, and the blue line ends at 3713 seconds.

In B the time is scaled to the ending time each simulation.

The one dimensional Liquid Moving Model says that if there is a big tem-

perature difference, the burn off time will be shorter. This might explains why

the desorption time in the 3-D simulation in Chapter 3 is longer than the real

experiment. Figure 5.5 compares the liquid weight curve with two cases, the cold

end temperature being 800 and 700 K. Comparing Figure 5.5 with Figure 4.4,

the experimental result, the similarity in the shapes of the curves are obvious.

However this is a one dimensional model. This model is hard to carry out for a

three dimensional sphere because the radial symmetry is lost so the simulation

needs to calculate through each coordinate in the three dimensional place. To

conclude, if there is a temperature distribution on the surface, the rate of weight
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loss will be greatly affected.

5.2.2 Surface Temperature Experiment

A small experiment was conducted to understand the temperature distribu-

tion on the surface of a burning aerogel. A thermal couple was placed at the tip of

an aerogel sample saturated with liquid methane. All but one side of the sample

were wrapped with aluminum foil to protect the thermal couple. While burning,

the sample was rotated to sideward and to point upward every few seconds. The

voltage across the thermal couple jumped when the sample rotated. The sample

was even pointed downwards a few times before the flame went out. The voltage

was then converted to temperature shown in Figure 5.6. This experiment shows

that the temperature on the side is hotter than the top, and the bottom is prob-

ably the hottest. The temperature difference between at the sides and on the top

can be as big as 120 degrees.

Surprisingly is that the temperature at the surface gains slowly instead of

maintaining around a high temperature. This experiment not only shows the

temperature distribution on the surface but also points out that the temperature

at the surface is not fixed. Future research models should take into account of the

time dependent temperature at the surface.
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Figure 5.6: Surface Temperature Measurement. The burning aerogel sample was

rotated every couple second to point up (↑) or right (→). Close to the end the sample

was also pointed downward (↓). The drop of temperature at the end was because the

flame went out. This graph indicates that the temperature is higher close to the bottom

of the surface.



Chapter 6

Conclusion

This thesis had done both theoretical and experimental work on the proper-

ties of desorptioin in porous media under a pressure and a temperature gradient.

Organic aerogel and methane were studied in this thesis. Diffusion and conduction

are the main concept to understand the desorption process. With the isotherm of

liquid adsorption in spherical pores, simulation models are built to describe the

system. A few variations of models have been studied and the results were com-

pared to the experiments. The experiments took chunks of liquid methane soaked

aerogel samples and monitored the weight while the samples were burning. Fur-

thermore the temperature distribution at the surface of the aerogel sample was

measured in order to improve the simulation model. Future research needs to

focus on the time dependent surface temperature.

The results of the simulation and the experimental results both show that

the total desorption time is proportional to the square of the sample’s effective

length. For a spherical sample the effective length is the radius. There are,

however, discrepancies between the simulation and the experimental results. The
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liquid weight losing rate is slower than the experimental result at the end of the

burning. The experiments take shorter time than the simulation. This leads to

further investigation of a temperature differences on the surface, which turn out

to have a significant impact on the result. The temperature distribution results

in the liquid being pushed to the colder part, but because the liquid remains close

to the burning surface, it evaporates faster.

The simulation result states that a five cm radius spherical aerogel saturated

with liquid methane takes 1.88 hours (6750 seconds) to burn. On the other hand,

it takes 1.25 hours (4500 seconds) to burn by the prediction using experimental

result. The goal of this project is to extend the results to liquid hydrogen. Under

the same condition, simulation result with hydrogen states that it takes 25.4

minutes (1525 seconds) to burn. This result indicates that storing hydrogen in

aerogel chunks prevents explosion and thus the aerogel filled hydrogen fuel tank

is a good suggestion to improve the safety of hydrogen storage.

Furthermore, this study goes beyond aerogel. The parameters used to de-

scribe a porous material in the simulations are pore size, filling fraction, density,

heat capacity, and thermal conductivity. If these parameters of any porous ma-

terial are known, the simulation models apply. To conclude, this thesis has done

a general study of desorption properties of porous media, with the models and

experiments carried out on organic aerogel and methane. This thesis also answers

the original question, whether or not filling aerogel into hydrogen fuel tank can

increase the safety level of hydrogen storage. And the answer is yes!



Appendix A

Constants

Aerogel

ρa=140 kg/m3 density

ca=1700 J/kg K heat capacity

ka=0.003 W/mK thermal conductivity
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Methane

Tb = 112.3 K boiling temperature @ 1 atm

m = 26.672 · 10−27 kg mass per particle

ρ = 422.4 kg/m3 liquid density

z1 = 3.98 · 10−10 m liquid particle size (z3
1 = m/ρ)

γ = 0.01346 N/m surface tension

Tv = 1500 K van der Waals temperature

Lv = 1.362 · 10−3 J latent heat per particle

ηl = 121.34 µPa s liquid viscosity @ Tb

ηl(T ) = 204.52 · ( T
90.694

)−2.648

ηg = 4.38 µPa s gas viscosity

ηg(T ) = 4.725·10−3·T 1.622

1+ T
89.051

cl = 3480 J/kg K liquid heat capacity @ Tb

cg = 2218 J/kg K gas heat capacity @ Tb

Kl = 0.186 w/mK liquid thermal conductivity @ Tb

Kl(T ) = 0.341− 0.001412 · T

Kg = 0.011 w/mK gas thermal conductivity @ Tb

Kg(T ) = 4.008 · 10−6 · T 1.552 + 6.48 · 10−3



Appendix B

Mathcad Program - Simulation

II: 3-D Boundary Moving

Model

3-D Spherical Simulation of moving boundary model. The second index

1 ∼M is for the Gas region.
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Appendix C

Mathcad Program - Simulation

II: 1-D Boundary Moving

Model
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Appendix D

Mathcad Program - Simulation I:

1-D Model
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Appendix E

Mathcad Program - 1-D Moving

Liquid Model
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