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Abstract

The detection of amplification of third sound by stimulated condensation in superfluid helium

requires a high resonance quality factor and high sensitivity to the third sound signal. For the

first time, a clean resonator has been built without dust particles bridging the small gap of the

detection electrode capacitor, and a procedure was developed to verify the gap’s integrity. Due to

this improvement, the highest quality factor of the third sound in the open disk design required

for the stimulated condensation experiment has been obtained, and a significant improvement in

evidence supporting the validity of the stimulated condensation gain has been achieved. However,

several further issues preventing a clean observation of the effect remain. These include a thickness

oscillation amplitude of the experimental third sound and disk mechanical resonance signals that

is not consistent with theoretical predictions, and a film flow dissipation about five time higher

than expected. Improvements in the detection electronics were made to help compensate for these

issues: A method to observe the stability of the detector LC circuit as it cools down into its

normal operating range was developed and used to verify the its intended condition, and several

adjustments to the overall stability of the cryogenic detector circuit were implemented. In spite of

these improvements, the cause of the anomalous dissipation in the superfluid remains unknown.
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Chapter 1

Introduction

This chapter outlines the attempt to perform a third sound amplification by stimulated condensa-

tion on superfluids 4He [1]. The amplification needs a high sensitivity of the electronic detection

system. My doctoral research was focused on the development of detection sensitivity. I also have

done several projects to understand the behavior of electronic instruments as part of the detection

system.

The third sound amplification experiment has been done in our research group for more than

a decade. The third sound is an important accoustic mode in superfluid helium for probing the

state of thin adsorbed films. It is expected that it is possible to amplify the third sound mode by

condensing incoherence helium atoms into the coherence ground state. This phenomena is similar

to photon amplification in a laser. Hence, we view this phenomena as an example of a matter laser.

However, several problems have prevented us from observing significant amplification of third

sound mode. The quality factor of the mode is not high. It only gives us a small percentage of

amplification. Moreover, a low signal to noise ratio has maked the situation worse. In my research, I

investigated possible factors that can lower the quality factor. Further, by developing the detection

system and improving the resonator assembly process, I have improved the quality factor. I also

calculated and took data of the electronic detection system to get a better understanding of the

signal characteristics of the third sound mode.

1



(a)

36

Figure 3.1  The Andronikashvili experiment. a) shows the stack of closely-spaced
metal disks hanging from a torsional fiber in a bath of 4He.  Andronikashvili's experiment
measured the superfluid density and normal-fluid density as a function of temperature for
liquid 4He, obtaining the results shown in b).  [from Tilley and Tilley 1986]

(b)

Figure 1.1: The phase diagram of 4He shown in figure 1.1(a). The Andronikashvili experiment set up and

the plot of superfluid component density as a function of temperature is shown in figure 1.1(b).

1.1 Quantum fluids

Helium is an interesting chemical element. It remains in a liquid phase at absolute zero temperature.

Helium can transform into a solid phase if we pressurize it to about 25 atmospheres or more as

shown in figure 1.1(a). This behaviour results from a low mass and weak attraction between

helium atoms along with quantum mechanics. We will see why quantum mechanics is important

for understanding Helium at low temperature.

A helium particle momentum (p) can be calculated from Maxwell-Boltzmann distribution [2]

p = (2mkBT )1/2 (1.1)

which m, kB and T are helium mass, Boltzmann constant and temperature, respectively. In

quantum mechanics, momentum can be expressed as p = h/λ, which h and λ are Planck constant

and de Broglie wavelength, respectively. Hence, we can write the thermal de Broglie wavelength as

λdB =

(
2π~2

mkBT

)1/2

(1.2)

We have to consider that quantum effects will be dominant when the thermal de Broglie wavelength

is comparable with other typical length scales in the liquid. For the case of 4He, it is in its liquid

2



phase below 4 K with a particle density of 1.881.1023particles/m3. Hence, the λdB is about 0.4 nm

which is larger than the typical interatomic distances (0.27 nm) [2].

Like other substances, 4He has three different phases: gas, liquid and solid. 4He’s liquid phase

is a unique phase. It can be divided into liquid I and liquid II. Liquid I behaves like a classical

fluid. It flows with resistance. On the other hand, liquid II flows with no resistance. We called this

phase the superfluid phase. The transition point from liquid I to liquid II is known as λ line. This

lambda-like shape appears as singularity in the specific heat graph as a function of temperature.

The lambda temperature at saturated vapor pressure is 2.17 K.

London recognized this lambda transition is related to the transition in the liquid which occurs

in an ideal Bose Einstein gas at low temperatures [3]. As a quantum liquid, the liquid helium

lambda point transition characteristics are not exactly the same as the transition in ideal Bose

Einstein gas [4]. The specific heat of helium at low temperature is proprotional to T 3. On the

other hand, the specific heat of the Bose-Einstein Condensation (BEC) is proportional to T
3
2 . This

is due to interparticle interaction in superfluid Helium that has a tendencey to lock the condensate

particles instead of allowing the process of excitation. There is a simple change of slope of the

specific heat versus temperature in the BEC case. The specific heat graph of helium has a much

sharper feature [2].

1.1.1 Two fluid model

Liquid II, as a superfluid phase, can exhibit non-viscous properties. However, certain experiments

showed that the superfluid can also have some fraction of viscous effect. One of the experiments

was performed by Andronikashvili in 1946 [5]. He built an apparatus out of a pile of circular disks

as shown in figure 1.1(b). It can rotate on its axis. He submerged it in liquid Helium and changed

the temperature. Viscous fluid will increase the inertia and damp the disk oscillation. His results

indicated that there was drop in the oscillation period at temperature below the Tλ. It means that

there was some fraction of the superfluid that has viscosity and another fraction does not.

To explain the phenomenon, Tisza postulated in 1938 [6] (and Landau in 1941 [7]) that there

are two types of components existing in the superfluid phase. They are superfluid component and

normal component. This postulate is known as the two-fluid model. The superfluid component has

no viscosity and is made up of the ground state of the system. Thermal excitations make up the
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normal component and give it viscous properties. Each component has an independent density and

velocity. However, the two components are impossible to physically separate. The total density (ρ)

is composed of the sum of the normal (ρn) and superfluid (ρs) density. The total current density

(~j) obeys,

~j = ~js + ~jn (1.3)

which ~js and ~jn are superfluid and normal current density, respectively. Since current density is a

product of density and velocity, we can write the superfluid and normal current density as

~js = ρs ~vs (1.4a)

~jn = ρn ~vn (1.4b)

which ~vs and ~vn are superfluid and normal component velocities, respectively. The normal compo-

nent made up of excitations carries mass and entropy. The superfluid component only transports

mass. At very low temperatures, the system is dominated by superfluid components as shown in

figure 1.1(b).

The wavefunction of the system can be written as

Ψtotal = ΨGS +
∑

Ψexcitations (1.5)

which ΨGS is the ground state wavefunction. The expression of ΨGS is

ΨGS =
√
ρeiΦ(~r) (1.6)

which Φ(~r) is the phase of the ground state wavefunction. The superfluid component velocity can

be calculated from the phase by this relation

~vs =
~
m4

~∇Φ(~r) (1.7)

1.1.2 Third sound modes

The third sound mode was explained by K.R Atkins in 1959 [8] and observed by C.W.F Everitt,

K.R. Atkins and A. Denenstein in 1964 [9]. It is similar to the shallow water mode. It has a

very long wavelength compared to the film thickness as shown in figure 1.2. In shallow water, the

restoring force is gravity force. However, the restoring force in the third sound mode is the van der

Waals force. This force is the attractive force between helium atoms and the substrate. For very
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Figure 1.2: The third sound mode’s wavelength is much bigger than the film thickness and film thickness

oscillation amplitude. Temperature at the peaks is colder than the temperature at the troughs.

thin films, the van der Waals force is orders of magnitude bigger than the gravity force (≈ 105 for

3 nm film thickness). The shallow water wave speed csw is

csw =
√
gh0 (1.8)

Due to viscosity, the normal component does not move if the superfluid helium film thick-

ness (h0) is much less than viscous penetration depth (δ). The viscous penetration depth can be

expressed as

δ =

√
2ηn
ωρn

(1.9)

which ηn are ω are normal component viscosity and film thickness oscillation frequency, respectively.

The viscous penetration depth is about 2µm. Hence, at the thickness of 3nm, only the superfluid

component can oscillate parallel to the substrate at velocity c3.

Since only the superfluid component can oscillate and carry no entropy, there is thermal gradient

induced between troughs and peaks. At the peaks, more superfluid component piles up relative

to the normal component. It means the temperature at the peaks is colder than the temperature

at the troughs. Third sound is also useful for several experiments that concern the probing of the

superfluid component. That is the reason why our group focuses on the third sound mode in order

to observe the amplification by stimulated condensation. This is done in a circular geometry.

The third sound mode on the circular disk that used in the experiment has a shape that can

be derived from simplified hydrodynamic equations. Figure 1.2 shows the length scale of the

third sound mode’s wavelength and thickness oscillation amplitude that permits us to neglect the

nonlinear component of velocity in the euler equation [10]. The continuity equation in the superfluid

helium film is

ρ
∂h

∂t
= −h0

(
~∇. ~vs

)
ρs (1.10)

It means that the rate of thickness oscillation
(
∂h
∂t

)
increase is proportional to the rate of superfluid
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component entering a region. We also use the force equation for the superfluid component. It is

∂ ~vs
∂t

= −~∇µ = −gv ~∇h (1.11)

where µ is chemical potential and gv is the van der Waals force per unit mass, respectively. We

differentiate equation 1.10 wih respect to t and find the gradient of equation 1.11. Hence, we have

these equations

ρ
∂2h

∂t2
= −h0

∂

∂t

(
~∇. ~vs

)
ρs (1.12a)

∂~∇. ~vs
∂t

= −gv ~∇2h (1.12b)

Eliminating the divergence, we can construct the following equation

~∇2h− ρ

ρs

1

gvh0

∂2h

∂t2
= 0 (1.13)

Equation 1.13 is the wave equation with the third sound speed (c3)

c3 =

√
ρs
ρ
gvh0 (1.14)

Hence, the equation 1.13 becomes

∇2h− 1

c2
3

∂2h

∂t2
= 0 (1.15)

We look for solution of equation 1.15 with harmonic time dependence. Assuming the thickness

oscillation is

h(x, t) = h(x)e−iωt (1.16)

we insert the thickness oscillation solution to equation 1.15 and divide by e−iωt to get

∇2h(x) + k2h(x) = 0 (1.17)

with k is equal to ω
c3

. In the cylindrical coordinates, the solution is

h = hmJm(kr)eimφ (1.18)

with integer m, Jm are Bessel function of first kind.

We look for solutions on a free disk. Since the film coats the top and bottom surfaces of the

disk, there are two modes due to the boundary condition between the top and bottom surfaces.

They are symmetric and antisymmetric modes. For the symmetric mode, the thickness oscillation
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(a) (b)

Figure 1.3: The schematic of the cell is shown in figure 1.3(a). Figure 1.3(b) shows the actual picture of

resonator.

for the top and bottom surface has to be the same. It can be achieved if and only if the derivative

of thickness oscillation with respect to r has to be zero at r = a. It means that ∂Jm
∂r |r=a = 0.

The boundary condition for antisymmetric mode is htop = −hbottom. Hence, the solution for the

boundary condition is h = 0 or Jm(kr) = 0 at r = a.

The full solution for the thickness oscillation is then

hm,n,s(r, φ, t) = ηm,n,s Jm(kmnsr) e
imφ e−iωmnst (1.19)

which ωmns = c3kmns = c3
xmns
a and a is the disk radius. The values of xmnsare the n-th zero of

J ′m(xmn) or Jm(xmn−1), where s is +1 and -1 for symmteric and antisymmetric mode, respectively.

ηmns is the mode amplitude.

The superfluid component velocity (~vs) for the m,n, s mode can be calculated from the equation

1.11 and 1.14 and assume that ~vs in the form of vsexp(−iωt). It is

~vs =
ρ

ρs
c3

~∇.h
i kmns h0

(1.20)

These are modes of a free disk. The supported disk has a post at r = 0 on the lower surface as

shown in figure 1.3(a). Previous work has shown that the modes are slightly different from the free

disk [1]. But it showed that there is inherent dissipation.
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Outline
Introduction
Experiment
Conclusion

Superfluid Helium
The Third Sound
Stimulated Condensation
Cell

Before There are N He atoms moving with speed v0, with
wavefunction ψN .

After : There are N+1 He atoms moving with speed v0, with
wavefunction ψ(N+1) + ψexcitations

Yudhiakto Pramudya Detection of Third Sound Mode in Superfluid Helium4

Figure 1.4: The initial condition in which there are N atoms moving in the same speed. The helium vapor

atom condensed into N atom helium film and joined with them with the same speed. The excitation energy

and momentum are carried by phonon, ripplon and roton.

1.2 Third sound amplification

The amplification of a persistent current of superfluid helium has been demonstrated by the group

of Henkel et al [11]. By adding more helium atoms to a moving superfluid helium film, they showed

that the angular momentum of a rotating persistent current was increased. This result motivated

us to do similar experiments to continuously amplify the third sound mode by condensing helium

atoms to the moving superfluid of the helium film acoustic mode.

1.2.1 Helium atom condensation

The superfluid component wavefunction can be written in term of condensate wavefunction. It is a

condensate of helium atoms in the ground state that coherently move together with speed ~vs. The

wavefunction of N helium atoms in the superfluid helium is ΨGS . A helium vapor atom condensing

into the superfluid helium film has to join the local flow of N helium atoms in the film. Hence, the

wavefunction becomes ΨGS + ψexcitations. The excitation needs to be included in the wavefunction

since the condensation process has to obey energy and momentum conservation. The excitation

wavefunction is composed of phonons, ripplons, or rotons. A phonon is the elementary excitation of

a compressional vibrations, the ripplon is the excitation of surface ripples of the film, and the roton
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Figure 1.5: The evaporator ring to produce helium vapor atom.

is an excitation due to relative motion between neighboring helium atoms, similar to the rotation

of a small ring of atoms [12]. Looking back to the equation 1.6, the condensation will not change

the phase of the ground state wavefunction since the ground state wavefunction is a macroscopic

wavefunction. It only changes the excitations, preserving the local ~vs.

Figure 1.5 shows the an evaporator ring placed above the disk to produce helium vapor atom.

The evaporator ring power controls the condensation rate. The third sound amplification is pro-

portional to the power since the additional helium atoms will add energy to the system.

1.2.2 Gain and quality factor

The third sound mode amplification comes from energy gained by condensing helium atoms coher-

ently into the moving superfluid helium film. The effect of energy gain is to cancel the inherent

dissipation of the third sound mode. Eventually, we will reach the self-oscillation condition if the

energy gain is larger than energy loss. The dissipation is an inverse of quality factor of the third

sound resonance. Hence, the goal for the stimulated condensation experiment is to observe signifi-

cant quality factor (Q) changes as we condense more helium atoms. The negative dissipation (gain)

by atom condensation is proportional to the ratio between the average of kinetic energy amplifica-

tion rate and the average of kinetic energy. The total dissipation is the sum of all dissipations and

gain. It is

1

Q
=

1

Q0
−
m4

∫
top Φv2dA

ωρ h
∫
top v

2dA
(1.21)
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which Φ,v,ω are vapor flux on top of the disk, third sound speed and third sound frequency. It also

can be expressed as a function of heater power [1]. It is

1

Q
=

1

Q0
− P

0.07W
(1.22)

The energy loss contributions come from thermal and non-thermal contribution. The thermal

dissipation is the dissipation that depends on the temperature. We also call it as a normal compo-

nent dissipation since the normal component carries entropy. The thermal dissipation is composed

by substrate, vapor and lateral dissipation. The substrate dissipation Qst comes from the temper-

ature gradient between film and substrate. Its expression as a function of temperature is obtained

by fitting the quality factor as a function of temperature from vast c3 data set collected by Fred

Ellis. It is
1

Qst
=

T

43000
(1.23)

The thermal gradient between film and vapor contributes to the vapor dissipation (Qvt). The vapor

quality factor expression is [1]

1

Qvt
=

1

Qvq

(
ωmn
γ(T )

+
γ(T )

ωmn

)−1

(1.24)

Qvq reflects a ratio between mechanical energy to thermal energy in the film. ωmn is the frequency

of the (m,n)th mode of third sound and γ(T ) is the thermal relaxation rate due to vapor coupling.

The film temperature changes due to evaporator power can be calculated as

Tf = T0 +R
1

2πa2
P (1.25)

which T0 and Tf are the unheated and heated film temperatures and R is the Kapitza resistance

between helium film and substrate [13], respectively. The effective heating power on the film

temperature change is about one third of the evaporator loop power since only a part of the

flux from the evaporator ring hits the disk.The last part of the thermal disspiation is the lateral

dissipation (Qlat). It comes from the lateral motion of the superfluid component while the normal

component is clamped to substrate. This lateral motion induces the thermal gradient between the

trough and the peak of the wave. We exclude the lateral disspiation in the total dissipation.

The non-thermal contribution to the total dissipation is composed by post radiation, vortex

drag and gap bridge dissipation. The inherent dissipation comes from the post that support the

disk on the lower surface. We could reduce it by reducing the diameter of the post. But, the
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consequence is the disk become less stable. The defects on the disk surface create vortex drag

dissipation (Qvor). We expect that this dissipation is very small (Qvor =∞). The dirt that can

bridging the capacitor gap also contributes to the non-thermal dissipation. The liquid can wick

into the gap assisted by the dirt that makes the gap bridge dissipation (Qgap) bigger.

We need to have small inherent energy dissipation to get self-oscillation. It means that we have

to have high quality factor contribution from the vortex. We are unable to control the thermal

(Qst) and (Qvt) since they are thermal interaction characteristic of the film and substrate and

vapor. The post dissipation also have limitation since there is competition between the stability

and the loss reduction. However, we could improve Qgap. Figure 1.6(a) shows the dissipation ( 1
Q)

as a function of evaporator power for low and high dissipation with temperature dependence. The

temperature dependent quality factor will bring the loss back up again at high evaporator power

since the film temperature is increasing.

With the same amount of other quality factor contribution, the smaller non-thermal dissipation

(the bigger non-thermal quality factor) shows a more obvious quality factor change due to gain. If

it is large enough, we could easily see the self-oscillation. The self-oscillation regime or negative

energy loss can be easily achieved with large non-thermal quality factor as shown in figure 1.6(a).

Figure 1.6(a) also gives us a picture of how difficult the experiment to achieve self oscillation. Figure

1.6(b) shows that we only see small fraction of quality factor changes as we turn heating power on

when we have large non-thermal dissipation.

We have to reduce the noise by making the resonator and electronic detection system mechan-

ically more stable. We have improved Qgap but Qvor still give us problem. The vortex damping

still high. The superfluid also has small critical velocity. We need to have good thermal contact

between film and the substrate to improve quality factor from thermal contribution.

1.3 Electronic detection

A second major project that I have completed during my doctoral research is the analysis of the

electronic detection sensitivity. We need to achieved a high signal to noise ratio and also need to

understand the behavior of each piece of electronics chain as they are connected together in a more

complicated circuit. In the end, the experimental signal is compared with the theoretical prediction

and expressed as the sensitivity ratio of the detection system. The ratio differing from unity in
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Figure 1.6: The graph of energy dissipation ( 1
Q ) as a function of evaporator power for small quality factor

(104) is shown in figure 1.6(a). The graph of energy dissipation as a function heating power for large quality

factor (105) is shown in figure 1.6(a). As the heater power increasing, the film temperature is increasing. (c)

The graph of loss reduced percentage as a function of evaporator power for low and high quality factor. The

typical evaporator power of the stimulated experiment is about 0.5 µW .
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magnitude or phase can be caused by several problems, but falling into two major areas. First,

the theoretical model is not the same as the actual condition of the resonator/electrode geometry.

Second, the model is not exactly the same as the actual electronic detection gain.

1.3.1 Capacitive detection

The third sound mode can be excited by applying an electric field to the film. The two drive

capacitors are responsible for this work. The gradient of the electric field at the capacitor edges

will produce the force to the helium film. The electrostatic force make the film thickness oscillation

happen.

The film thickness oscillation is measured by monitoring the pick-up capacitor capacitance

changes. We connect the capacitor to an inductor and is driven by tunnel diode to make an Tunnel

Diode Oscillator (TDO) that can transmit carrier frequency around 74 MHz. The carrier frequency

could have interference interaction with an external frequency. It becomes a serious issue if the

amplitude of the external frequency is large. It would affect to lock-in the signal to the local

frequency. Hence, the third sound signal that we detect is inaccurate. The accuracy of the signal is

also influenced by how we know the drive voltage that we apply to the drive capacitor. The drive

signal comes from voltage generator. It is connected to the transfomer. The transformer has 1:3

turns ratio. Later, we call this transformer the ”3X-Box”. Another function of the 3X-Box is to

isolate the signal generator to the electronic circuit inside the cryostat.

Calculation of film thickness oscillation also depends on the theoretical model of resonator ge-

ometry. We can identify several sources of discrepancy between the model and the actual resonator

geometry. There is no precise measurement of the disk curvature. We only assume that the edge

of the disk is not sharp and has a smooth curvature. The exact value of the actual radius will

improve the model. During the assembly process, there is a possibility that the post of the disk is

in improper condition. It can be off-center. That would make the symmetrical model irrelevant.

The capacitor gap size need to be uniform for four sides of the resonator. If the disk and electrode

are in the tilted position, we will have different gap sizes for four sides of the resonator.

We need to construct the resonator in a proper electrical contact to achieve high sensitivity.

The electrical connection between different parts in the resonator must be in good condition during

the experiment. We cooled the resonator from room temperature to temperature less than 1K.
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Figure 1.7: The block diagram of phase-lock loop.

Each part of resonator has a different thermal expansion coefficient that could apply more stress to

the electrical connection. It would make several cracks in several places in the cell and eventually

will add more to the stray capacitance.

1.3.2 Demodulation TDO frequency

The thickness oscillation signal is a frequency modulation coming from a changing of capacitance.

Phase-locked loop (PLL) is a standard procedure to change frequency modulations by comparing

modulated parameter with reference parameter. In other words, comparing the TDO frequency

and known local frequency. Any phase difference between TDO and local frequency will be used

to correct the modulation frequency. This correction is known as feedback loop. This is the way

to make the TDO locked to the local/reference oscillator. This correction is also the thickness

oscillation signal. Another path from mixer that carry this information goes to The Digital Signal

Processing (DSP) lock-in. It shows the magnitude and phase of modulation signal.

The PLL can accept and lock a range of signal frequencies. This range is the lock-in range. In

the experiment, we set our carrier frequency right in the center of lock-in range. This is to make

sure that during the measurement, we will not reach the out of lock-in range. We do not want to

have small lock-in range. That is the reason why we also need good electronic stability for doing

measurement.
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Chapter 2

Third Sound Resonator

This chapter outlines the theoretical calculation of film oscillation amplitudes and disk vibration

amplitudes. The film oscillation is in the third sound mode. The amplitude of film oscillation can

be measured using the fitted experimental value of the resonance profile and this calculation. The

calculation is based on the Bessel function solutions of film oscillations on the circular plate driven

electrostatically. The experimental value of film oscillation amplitude compared with the theoretical

value is what we call the sensitivity ratio. It gives information to how well the experimental results

matches the theoretical value. The mechanical resonance analysis of the disk is based on a similar

calculation of the circular disk vibration [14], and used as a confirmation of the mechanical integrity

of the apparatus.

2.1 Sensitivity ratio of third sound

2.1.1 The disk geometry

The third sound mode signal is driven and detected capacitively. The capacitor is composed of a

sapphire disk supporting the third sound and an electrode. The electrode is made of a 12.7 mm

circuit board that was divided into four areas (the dark areas in figure 2.1(a)). Those four segments

are 2 drive areas (D) and 2 pickup areas (P). They are contructed by removing thin layer of copper

in such away that the side of D is coincide with the center line (C/L). The 2 pickup segments

are connected together via lower side of the circuit board. The hole in the center of electrode is

created for the disk post so the electrode can be placed under the disk. The distance between the
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(a) disk (b) electrode

Figure 2.1: a. The electrode geometry shows the four areas that consists of two drive and two pickup areas.

b. The disk geometry with the effective radius due to edge curvature correction.

lower surface of the disk and the electrode is about 30µm as confirmed in the chapter 5. The figure

1.3(a) shows the schematic of the disk that is supported by the post and the base. It also shows

the arrangement of the disk and the electrode.

The disk picture can be seen in figure 2.1(b). The disk has an outer radius of 6.5 mm and a

thickness of 0.5 mm. It is coated with silver and electrically grounded. To simplify calculation

of the wave function in the boundary, we treat half of the disk thickness as an additional radius.

This is checked by comparing the exact wave solutions for the thin cylindrical disk to a perfectly

flat disk. The wave solutions of the thin cylindrical disk with thickness w is match with the wave

solution of the flat disk with additional radius of 0.5w. The effective radius of the disk (a) is

6.75 mm. All dimensions are scaled to this radius. Since the edge of the disk is not sharp, we

need to make a correction to the capacitance due to curved shape as shown in figure 2.2. The

correction is a fraction of the actual radius forming the small gap of the electrode. Its value is

0.92, determined optically. The correction of the disk edge also defines the capacitor outer radius.

Hence, the effective capacitor radius (ρ) is 0.88 times effective radius of the disk. The shaded area

of the disk figure is overlap with the dark segment in the electrode. The distant A on the disk is a

half of the distant between two drive segments.

The disk capacitance geometry can be defined by two additional dimensions determined by the

electrode dimensions: the inner edge distance from the center (A) and the length of this inner edge
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Figure 2.2: The effective radius (a) and the curvature shape of the disk edge.

(B). The outer edge is at the effective capacitor radius (ρ) and the sides extend at 45◦ between the

inner edge and outer radius. For the drive electrode,

A =
5.08mm

2a

B =
5.08mm

a

For the pickup electrode,

A =
6.96mm

2 a

B =

(
6.96mm

a
− 2
√

2 1.016mm

a

)
The electrode is centered on the lines bounding the drive electrode as shown in figure 2.1(a).

We also calculate the value, C, at the intersections of the 45◦ line and the circle at ρ. We find

C =
(2A−B) +

√
8ρ2 − (2A−B)2

4
(2.1)

The scaled area of pickup electrode can be calculated as sum of the trapezoid area and the segment

area shown in figure 2.3. The area of the pickup electrode in each quadrant is the sum of those two

pieces.

Atrapezoid =
1

2
(C −A)

(
B

2
+ C −A+

B

2

)
(2.2)

Asegment =
ρ2

2
acos

(
C

ρ

)
− 1

2
C
√
ρ2 − C2 (2.3)

The total area of the pickup electrode, consisting of both sides ”P” in figure 2.1(a) is then

Ap = 2a2

(
(C −A)(B + C −A) + ρ2

(
acos

(
C

ρ

)
− C

ρ

√
1− C2

ρ2

))
(2.4)
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Figure 2.3: The area of trapezoid and segment of pickup area on the disk. The side line of the trapezoid is

line up with the off-center 45◦ line.

2.1.2 Drive and pick-up integral

Based on the wave mode calculation in chapter 1, we can write the geometrical overlaps of the

third sound mode with the electrodes. That is an integration over region exposed to the uniform

gap of the parallel plate weighted by the wave amplitude function, for either the drive or pickup

electrodes.

D,P =
1

πa2

∫
electrode

Jm(kr)eimφdA (2.5)

The D and P are normalized to the disk area (πa2), making them a unitless measures of the mode

overlay with the electrodes. The integration of D and P can be split into two parts. For the first

part, we integrate the function from r = A into r = rc, where rc is the hypotenuse of the triangle

OAB
2 as shown in figure 2.3. The second part is integration from r = rc into r = ρ. The total value

of D and P is the the sum of two parts. They are

p1 =

∫ rc

A
J(m,xmr) sin

(
m acos

(
A

r

))
rdr (2.6a)

p2 =

∫ ρ

rc
J(m,xmr) sin

(
m

(
π

4
− asin

(
A− B

2√
2r

)))
rdr (2.6b)

We can write the integrand for three different values of m

For m > 0 and odd, P is zero since the thickness oscillation is antisymmertrical and the two

sides of the pickup electrode are symmetric with respect to inversion of r.
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For m > 0 and even:

rc =

√
A2 +

(
B

2

)2

(2.7)

p1 =

∫ rc

A
J(m,xmr) sin

(
m acos

(
A

r

))
rdr (2.8)

p2 =

∫ R

rc
J(m,xmr) sin

(
m

(
π

4
− asin

(
A− B

2√
2r

)))
rdr (2.9)

Which xm is the zero of the first derivative of the Bessel function for symmetric modes and the

zero of the Bessel function for antisymmetric modes. Hence, P is 4
m π (p1 + p2).

For m = 0

p1 =

∫ rc

Ap

J(m,xmr) acos

(
A

r

)
rdr (2.10)

p2 =

∫ R

rc
J(m,xmr)

(
π

4
− asin

(
A− B

2√
2r

))
rdr (2.11)

So, P is 4
π (p1 + p2).

For the D, we use the A and B parameters for the drive electrode. D has three different values

that depend on m. They are

For m > 0 and odd, D is zero

For m > 0 and even: D =
2 exp

(
im
(π

2

))
mπ

(p1 + p2)

For m = 0, D =
2

π
(p1 + p2)

2.1.3 Gap calibration

The capacitor gap could expand or shrink as we change temperature. It impossible to measure the

gap size once we put the resonator into the cell. Hence, we need calculation of the gap size based

on TDO frequency changes. The inductor, capacitor and equivalent resistor of tunnel diode will

oscillate at the TDO frequency. The frequency will change if capacitance changes. Hence, as we fill

the capacitor gap with liquid helium or nitrogen, the TDO frequency will shift down. The shift of

the frequency can be used to calibrate the gap size of capacitor. The total capacitor is composed of

the pick-up capacitor (Cp) and additional stray (Cs) capacitance as shown in figure 2.4. The stray

capacitance is any capacitance except Cp. It is the capacitance of any small separations between

different metal surfaces, for example the capacitance between the resonator base and the electrode.
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(a) empty (b) filled

Figure 2.4: The Cp and Cs when the gap is empty and filled with liquid.

The empty tunnel diode ferquency and filled tunnel diode frequency are

fempty =
1√

L (Cp + Cs)
(2.12a)

ffilled =
1√

L (εHe Cp + Cs)
(2.12b)

which L is the TDO inductor. We assume that only capacitor that changes its capacitance as

we fill the gap with liquid is the pickup capacitor. Since the smallest gap (30µm) is the pickup

capacitor gap. As the gap filled with liquid, the TDO frequency changes significantly with small

amount of liquid addition. It only can be achieved by filling a small gap. From equation 2.12a and

2.12b, we can find

cpr =
Cp

Cp + Cs
=

(
fempty
ffilled

)2

− 1

εHe − 1
(2.13)

which cpr is the ratio between the pickup capacitance and the total capacitance. Hence, the pickup

and the total capacitances are

Cp = cpr Ctot (2.14)

Ctot = Cp + Cs =
1

(2πfempty)
2 L

(2.15)

From the value of pickup capacitance, we can calculate the capacitor gap, d, between electrode and

the disk.

d =
ε0Ap
Cp

(2.16)

2.1.4 Mode details

From experiment, we can extract information about the drive frequency, quality factor, amplitude,

and phase of a driven third sound signal. Based on the frequency and mode, we can calculate
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theoretical value of mode sensitivity, in Hz/nm, of the TDO. We start from the capacitance

changes as the film thickness changes. The capacitance change of each plate element is found from

the series combination of the vacuum and film sections of the electrode element. This value is

integrated for the parallel capacitance of all the elements. This will be valid if the wavelength of

the film shape mode is much greater than the gap.

The thickness shape at the peak of an oscillatory cycle is

η(r, φ) = ηm,nΨm,n(r, φ) (2.17)

where η is the oscillatory amplitude. The change of each capacitance element with area dA is

dC =
1

1

ε0 dA

d− ηm,n(r, φ)

+
1

εHe dA

ηm,n(r, φ)

− ε0 dA

d
(2.18)

We can simplify the above equation by taylor expanding for small η into

dC =
ε0
d2

(
1− ε−1

He

)
ηm,n(r, φ)dA (2.19)

So, integrating over all parallel elements, the total change is the integral over drive or pickup.

dC =
ε0
d2

(
1− ε−1

He

)
η

∫
Ψm,n(r, φ)dA (2.20)

The integration in equation 2.20 for drive and pick-up capacitor are the quantities D and P of

equation 2.5.

dCD =
ε0πa

2

d2

(
1− ε−1

He

)
ηD (2.21a)

dCP =
ε0πa

2

d2

(
1− ε−1

He

)
ηP (2.21b)

As the mode is driven, the applied voltage interacts with each oscillators mode. We are interested

in only motion of one mode, the m,nth assuming this mode rigidly interacts with its electrostatic

energy. We calculate the electrostatics energy change of the drive plate including the work done

by the voltage source at VD.

dUelect =
1

2
dCDV

2
D − VDdQ (2.22)

We substitute dQ with dCDVD. So, the equation 2.22 becomes

dUelect = −1

2
dCDV

2
D (2.23)
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We plug equation 2.21a into equation 2.23

dUelect = −
ε0πa

2V 2
D

2d2

(
1− ε−1

He

)
ηD (2.24)

For the next calculation, we calculate the Van der Waals energy of the film. We integrate the

energy over both the top and bottom of the disk. This is the rigid mode assumption allowing the

DC and AC response to be connected by simple harmonic motion.

dUV dW =

∫
1

2
ρHe g η(r, φ)2dA (2.25)

where g is Van der Waals force per unit mass. We calculate the energy over the whole disk as

UV dW = ρHe g η
2 πa2 Ψrms(r, φ)2 (2.26)

where Ψrms =
1

πa2

∫
ψ2dA.

The equilibrium condition in a DC field is achieved by setting the derivative of the sum of

electrostatic and van der Waals energies with respect to the displacement η equal to zero. The

displacement obtained in this calculation is the hypothetical rigid mode displacement in the static

field, ηDC

ηDC =
1

4

ε0V
2
D

(
1− ε−1

He

)
D

ρHe g d2 Ψrms(r, φ)2
(2.27)

The third sound speed as function of film thickness is

c2
3 =

ρs
ρHe

gh (2.28)

which ρs is the superfluid component density. It is

ρs = ρHe

(
1− hs

h

)
(2.29)

where hs is known as the ”solid layer” of liquid helium. It is dominated by a layer that is solid

under high pressure due to the van der Waals force, but also includes a non-superfluid contribution

from the surface healing length. It’s experimentally determined thickness is 0.52 nm [15]. Equation

2.27, 2.28 and 2.29 yield

ηDC =
1

4

ε0 V
2
D h

(
1− hs

h

) (
1− ε−1

He

)
D

ρHe c2
3 d

2 Ψrms(r, φ)2
(2.30)

The AC drive force has half the DC amplitude at twice the drive frequency. It is derived from

cos(ωrt)
2 =

1 + cos(2ωrt)

2
.
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We calculate the displacement based on the assumption of simple harmonic oscillator motion

of the rigid mode. Using the exp(−iωt) convention, the AC response is then

η =

1

2
ηDC

1−
(
ω

ω0

)2

− i

Q

ω

ω0

(2.31)

Further discussion considers the amplitude on resonance, which is ω = ω0, where ω0 is the mode

resonance frequency and Q is the quality factor.

ηmn =
i

2
ηDCQ (2.32)

Hence, the thickness oscillation on resonance for the m,nth mode is

ηmn =
i

8
Q
ε0 V

2
D h

(
1− hs

h

) (
1− ε−1

He

)
D

ρHe c2
3 d

2 Ψrms(r, φ)2
(2.33)

Differentiation of equation 2.12a respect to Cp give us

dfmn = −1

2
L (L(Cp + Cs))

−3/2 dCp (2.34)

The ratio between equation 2.34 and 2.12a is

dfmn
fTDO

= −1

2

dCp
(Cp + Cs)

(2.35)

where fTDO is equal to fempty. Using 4.4, we have the changes of the TDO frequency due to changes

of capacitance. It is
dfmn
fTDO

= −1

2

dCP
Ctot

(2.36)

Then, we can insert the capacitance changes equation 2.21b into equation 2.36 to calculate mode

sensitivity of the TDO. It is

dfmn
ηmn

= −1

2

fTDO
d2

πa2ε0
(
1− ε−1

He

)
P

Ctot
(2.37)

Using equation 2.13 and 2.16, we can rewrite equation 2.37 in terms of measuring quantities

dfmn
ηmn

= −1

2

fTDO
d

πa2
(
1− ε−1

He

)
cprP

Ap
(2.38)

The theoretical frequency modulation of tunnel diode frequency due to thickness oscillation is

fmn = ηmn
dfmn
ηmn

(2.39)

The complete expression of the above equation is

fmn = − i

16
QfTDO

h

d

(
1− 1

εHe

)2

cpr
πa2

Ap

DP

Ψ2
rms

(
1− hs

h

)
εV 2
d

d2ρc2
3

(2.40)
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2.1.5 Experimental sensitivity

The actual comparison to experimentally measured voltage amplitudes requires a calibration of the

complete Frequency Modulation (FM) detection system. This is the phase-locked loop calibration

(PLLCAL). It is the response of the voltage measuring device to a known frequency modulation

imposed in the detector electronics. The PLLCAL is measured in Volt/Hz.

We drive the third sound mode wiith Vd drive voltage swept over a range of drive frequencies.

The third sound signal is detected by the detection system and fit to a Lorentzian 2.31 to extract

the information of third sound frequency, quality factor, amplitude and phase. We calculated the

experimental frequency modulation (fexpmn ) using the measured third sound voltage amplitude and

the PLLCAL.

The theoretical value of thickness oscillation needs the information of the measured third sound

frequency and quality factor. We used the third sound frequency to calculate the third sound speed.

It is

c3 =
ω0)a

xmn
=

4πfresa

xmn
(2.41)

which fres is the resonance frequency. The 4π frequency doubling associated with the AC response

of pickup capacitance. Then, we used the third sound speed to calculate the film thickness using

equation 2.28. Finally, we calculate the theoretical frequency modulation using equation 2.40.

The component fexpmn Sensitivity ratio has several experimental corrections due to the lock-in

instrument DSP lock-in phase and definitions used in the fitting between amplitude on resonance

and relative to Simple Harmonic Oscillator. After these adjusments, the sensitivity ratio is

SR =
ifexpmn

if cmn
(2.42)

Factor of i in the numerator is a phase difference between the 1f and 2f responses at DSP lock-in.

Factor of i in the denominator is phase different between amplitude on resonance and relative to

Simple Harmonic Oscillator. The conjugate of fmod responsible for transformation from exp(−iωT )

for fmod derivation and exp(iωt) for experimental result fitting program.

2.2 Sensitivity ratio of mechanical resonance

We also checked the disk mechanical resonance signal to get more information of electronic problems

that could make the sensitivity ratio of third sound signal deviated significantly from 1. The
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mechanical distortion of sapphire disk is also driven by the electrostatics field of the drive capacitor.

In a similar way, we also find the vibrational mode of the disk. The disk is supported by a central

on the base. The mode and its frequency for this geometry can be calculated based on the vibration

of a clamped circular plate from a paper by Leissa [14].

2.2.1 Theory of plate vibration

The transverse wave of a plate distortion η is

∇4η − k4η = 0 (2.43)

k is a parameter related to the vibration frequency by

ω2 =
Y h2k4

12ρ(1− ν2)
(2.44)

which Y is modulus Young, h is plate thickness, ρ is density of the plate, and ν is Poisson ratio.

The general solution for the differential equation 2.43 is

η = (AJm(kr) +BIm(kr) + CYm(kr) +DKm(kr))cos(mφ)e−iωt (2.45)

where J is Bessel function of the first kind, Y is Bessel function of the second kind, I is modified

Bessel function of the first kind, and K is modified Bessel function of the second kind.

For our derivation, we use the specific solution for the case where the annular plate is clamped

at the inner radius and free at the outer radius. This system is similar to the base supported plate

as used in our experiment. The bending moment of the plate is

Mr = −D
[
∂2η

∂r2
+ ν

(
1

r

∂η

∂r
+

1

r2

∂2η

∂θ2

)]
= 0 (2.46)

and the Kelvin-Kirchhoff edge reaction is

Vr = −D ∂

∂r
(∇2η) +

1

r

∂

∂θ

(
−D(1− ν)

∂

∂r

(
1

r

∂η

∂θ

))
(2.47)

which D is flexural rigidity, defined as

D =
ρω2

k4h
(2.48)

Hence, the bending moment at outer edge is

Mr = U =
∂2

∂x2
η + ν

(
1

x

∂

∂x
η − m2

x
η

)
= 0 (2.49)
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and

Vr =
∂

∂x
(∇2η)− m2(1− ν)

x

∂

∂x
(
η

x
) = 0 (2.50)

The inner clamped condition :

η = 0,
∂

∂x
η = 0 (2.51)

where x = kr. We insert 2.45 to the boundary conditions of free outer edge and clamped inside to

construct a matrix representing the boundary conditions. It is

M(x) =


UJn(m,x) UIn(m,x) UY n(m,x) UKn(m,x)

V Jn(m,x) V In(m,x) V Y n(m,x) V Kn(m,x)

Jn(m, εx) In(m, εx) Y n(m, εx) Kn(m, εx)

∂
∂xJn(m, εx) ∂

∂xIn(m, εx) ∂
∂xY n(m, εx) ∂

∂xKn(m, εx)


where ε = b/a which is the ratio of inner and outer diameter. We can find the frequencies and

coefficients of each term by solving these equations :∣∣∣M(x)

∣∣∣ = 0 (2.52a)

M(x)


A

B

C

D

 = 0 (2.52b)

There are two modes that most likely can be measured. They are (0,0) and (2,0) mode. But,

when we did the measurement, the (0,0) mode is very difficult to detect due to its coupling to other

parts of apparatus.

2.2.2 Disk geometry

Most of the response follows that of the third sound mode. In the previous section, we already

explained the disk geometry. There is slight different parameter in the mechanical resonance anal-

ysis. The radius of the disk (a) excludes half of the disk thickness correction since the analysis is

for transverse distortions of the disk, not the film on it’s surface.
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2.2.3 Drive and pick-up Integrals

Based on the wave mode calculation, we can write the geometrical overlaps of the wave mode with

the electrodes.

D,P =
1

πa2

∫
(AJm (xmr) +BIm (xmr) + CYm (xmr) +DKm (xmr)) cos(mΦ)dA (2.53)

For (2,0) mode, equation 2.52 gives

Φ(2, xmr) =
1√

0.0723
((−0.979)J2 (xmr) + (−0.185)I2 (xmr) + (−0.069)Y2 (xmr) + (−0.046)K2 (xmr))

(2.54)

Now, we calculate P(2,0) mode which is wave mode overlapping with pickup electrode.

rc =

√
A2
p +

(
Bp

2

)2

p1 =

∫ rc

Ap

Φ(2, xmr)acos

(
Ap
r

)
rdr (2.55)

p2 =

∫ R

rc
Φ(2, xmr)

(
π

4
− asin

(
Ap − Bp

2√
2r

))
rdr (2.56)

hence, P(2,0) is 4
π (p1 + p2) with xm is 2.465. D(2,0) is 2

π (p1 + p2)

2.2.4 Mode Details

The detail of the mode is (2,0) mechanical mode. here, the changing of capacitance due to transverse

oscillation of the silver-coated sapphire disk. Hence, we calculate the displacement by equating the

elastic energy and the electrostatic energy. First, we started from the mode shape

η(r, φ) = η Ψ(r, φ) (2.57)

The changing of capacitance because of changing the gap due to disk oscillation can be calcutaed

using equation 2.18 with εHe =∞.

dC =
ε0 dA

d− η(r, φ)
− ε0 dA

d
(2.58)

The equation of drive and pickup capacitor and electrostatic energy for the disk are similar for

third sound. The only different is the restoring force. It is elastic energy of the disk. The elastic

energy is the same as kinetic energy of the disk for simple harmonic oscillator.

∆Uelast =

∫
1

2
|vp|2 dM (2.59)
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which vp = iωη. vp is peak velocity of the disk displacement. Hence, the elastic energy is

∆Uelast =
1

2
ω2η2

∫
ρh dA (2.60)

∆Uelast =
1

2
ρ π a2 h (ωη)2 (2.61)

which is ω = 2π(2f). The equilibirum mode displacement in the static field (DC) is
d

dη
(∆Uelect + ∆Uelast) = 0 and

ρπa2hω2η =
πa2ε0 V

2
d

2d2
D

Hence,

ηDC =
1

2

ε0 V
2
d D

ρ h d2 ω2
(2.62)

As before, the gap size oscillation on resonance is

η20 =
i

4
Q

ε0 V
2
d D

ρ h d2 ω2
(2.63)

This is called the mode sensitivity of the LC oscillator for disk mechanical resonance is

∆ftdo
η

= −1

2

ftdo
d

Cp
Ctot

πa2

Ap
P (2.64)

Finally, the frequency modulation of TDO for mechanical resonance is

f20 = − i
8
Q
fTDO
d

cpr
πa2

Ap

DP

ω2

ε0V
2
d D

ρhd2
(2.65)

From this equation, a similar sensitivity ratio can be measured for comparison to the third sound

case. These results are discussed in the chapter 5.
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Chapter 3

Capacitor Gap Integrity

The capacitor gap has a major role in the detection system. It needs to be clean and not have

any dirt that can bridge the electrode plate and the disk. The disk itself also needed to be in a

good condition. We expected that there is smooth surface of the silver coated sapphire (Al2O3)

disk. Otherwise, it would amplify the dissipation of the third sound signal. We also improve the

assembling process of the plate. We invented the way we can place the plate support in the center

of the plate.

3.1 The disk and the electrode plate

The disk plate is supported by the puck. We attached the disk puck right in the center of disk

bottom surface. It needed to be placed with high precision since the off-center position would

change the quality of the third sound mode signal. The attaching process was performed in the

Leitz Jig Borer machine as shown in figure 3.1(a). We used the X and Y scale on that machine to

center the puck. We also focused on the disk surface smoothness. Since the superfluid helium film

coated the top and bottom surface of the disk, we needed to have a smooth surface on the disk

edge. We polished the disk edge using a lathe machine at about 650 Rotations Per Minute (RPM).

We used the diamond slurry to grind the rough surface of the disk edge.

The sapphire disk needed to be clean in order to let the silver coated stick well on it. In the

polishing process, there were a lot of sapphire chips that was ground by the diamond slurry. Hence,

we needed to clean the disk with methanol and wiped it with kimwipe. The disk was dried with
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(a) (b)

Figure 3.1: The centering process and the coating chamber.

the air blower.

The coating process was performed using a Veeco evaporator to create the thin film coating

of the sapphire disk as shown in figure 3.1(b). To enhance the stickness of the thin film, the

Titanium filament need to be added to the coating process. We tried the coating process without

titanium addition to examine the stickiness. The silver coating was easily taken off by rubbing it

with a finger. The thickness of the silver thin film was monitored by the Quartz crystal resonance

frequency. The frequency changes (∆f) correspond to thickness changes (∆d in Å). It is

∆f = KM∆d

(
1− ∆f0

fq

)2( hT
hM

)2

(3.1)

KM is the rate of frequency changes per changes of film thickness. It is 10.3 Hz/m for silver coating

on sapphire substrate. hT and hM are the height of the disk and the quartz crystal monitor from

the silver boat. In our evaporator, the hM is twice the hT .∆f0 and fq are crystal health reading

and uncoated quartz crystal frequency (6 MHz). Crystal health reading is initial crustal frequency

reading before the coating process. For 1000 Å film thickness at 632 Hz crystal health reading,

the frequency change was about 2574 Hz. The rate of deposition corresponds to the rate of the

frequency change. We adjust the rate of frequency changes to be 20 - 24 Hz per second to get

uniform film thickness.

The electrode plate also needed to have a smooth surface. We also wanted the plate as flat
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Figure 3.2: The SiC coated glass plates to make the electrode plate smooth and flat.

as possible since we would expect that we have uniform capacitor gap size. Before we did the

smoothing process, we needed to solder the wire to the four corners of the electrode plate. It only

needed a small amount of solder but a well wetted bead. If necessary, we could sand the solder

bump in such a way that no solder protruded above the plane of the electrode plate. Then, we

prepared for the smoothing process. We used 3 glass plates that was coated by Silicon Carbide

(SiC). To coat the plate with the SiC, we wetted the glass plates with SiC slurry and pressed and

rubbed 2 plates together at a time. After we had very thin layer of the SiC coating the glass plate,

we were ready to sand the electrode by gently pressing and rubbing the electrode plate with a

finger to the glass plates. We repeated the process until we had a smooth and flat surface on the

electrode plate. Figure 3.2 shows the smoothing process of the electrode plate. The final step was

assembling the disk with the puck and the electrode plates which were supported by the post on

the resonator base.

3.2 Cleaning the capacitor gap

We assembled the resonator in a clean room. The clean room that we used is different from the

clean room used for semiconductor fabrication. The clean room has an air blower that blow any

dirt down away to the floor. We made measurements of the dirt collection in the clean room to

know the quality of the clean room. Since the capacitor gap size is in the range of 20-30 µm, we

are interested in dirt that has a size of 10 - 20 µm. We made 70 squares with the area of 0.09

cm2 on a glass microscope slide. We counted the number of the dirt on each square under the
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microscope. We let the glass microscope slide stay in the clean room for 9374 minutes. We got the

reading of number of the dirt difference before and after we took the measurement. The result of

the collection rate was 0.018 ± 0.043 particles per cm2 per hour. This collection rate was below

the threshold of the dirty limit which is 0.1 particle per 1 cm2 area per hour. A typical time to

assembly the resonator is 2.5 hours.

We swept 12 µm thick kapton sheet through the gap to make sure that there was no dirt inside

the capacitor gap. Hence, any dirt that was trapped inside the gap would be swept away by the

kapton sheet. It also gave us an approximation of the capacitor gap size. The capacitor gap size

was not less than the size of the kapton sheet thickness.

3.3 The quality of capacitor gap

We tested the cleanliness of the capacitor gap by filling the cell with the liquid Nitrogen. By

measuring the dimension of the cell and all the components of the resonator, we can calculate the

volume at the bottom of the electrode plate (Vbp). The volume of the liquid that is transferred

to the cell is less than Vbp. In other words, the liquid level is below the height of the bottom of

the electrode plate. Any dirt that is inside the capacitor gap will pull the liquid into the capacitor

gap. Hence, the capacitor gap will be filled with liquid even while the liquid level is well below the

height of the electrode plate.

We do not have volume gauges to measure the volume of the liquid in the cell. Hence, we are

unable to do measurements in such away that we fill the cell below the Vbp. However, we can use

another level, which is the position of filling tube. The height of the filling tube is well below the

Vbp. We can calculate the height of the filling tube based on the cell dimension. We also can get

the height by monitoring pressure changes as we pump the cell.

First, the cell was being filled with liquid Nitrogen at 75 Torr above atmospheric pressure

(760 Torr) for about 6 hours. Then, the cell was pumped. We took measurement of pressure as a

function of time. The starting pressure was about 7.2 Torr. After we pumped for about 20 minutes,

the pressure dropped to 3.8 Torr. The pressure stayed almost constant for about 10400 seconds.

Those 2 pressure values gave us information the position of the filling tube. The 3.8 Torr pressure

corresponds to the moment when the liquid Nitrogen level at the height of the filling tube.

The way we calculated the height of the filling tube was to start from calculating the volume
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(a) (b)

Figure 3.3: The graph of the TD frequency changes as a function of time for clean and dirty capacitor gap

of liquid Nitrogen at a particular pump rate.

V0 = V̇0

(
3.8 Torr

Pref

)2

10400s (3.2a)

∆Vf = V̇0

(
7.2 Torr

Pref

)2

1080s (3.2b)

which V0, ∆Vf , V̇0 and Pref are liquid Nitrogen volume at the height of filling tube, the volume of the

liquid Nitrogen above the height of filling tube, the pump rate and reference pressure, respectively.

Hence, the ratio of time to fill the cell with liquid Nitrogen at particular filling rate between V0

and V0 + ∆Vf is 0.72. Based on this ratio, we had to fill the cell up to V0 for 4.32 hours at 75 Torr

above atmospheric pressure. That was equivalent to 1.439 cc of liquid Nitrogen. Once the liquid

level reach the height of the filling tube, we stopped filling.

During the filling and pumping process, the TDO frequency changes as the dielectric of capacitor

changes from vacuum to liquid Nitrogen. We compared the behavior of the TDO frequency as a

function of time for the clean and dirty capacitor gap. Figure 3.3(a) shows that we stop filling

after 4.32 hours and waited for about 6 days. The TD frequency remained constant for a very long

time. There was insignificant jump that indicated filled capacitor gap. If the capacitor gap was

filled by liquid Nitrogen, there would be a TDO frequency jump that was about 3 MHz for the

first jump and another 6 MHz for the second jump. Hence, we can conclude that the capacitor

gap was clean since there was no indication of a frequency jump when the cell was filled below the

bottom of electrode plate. Figure 3.3(b) shows the dirty capacitor gap case. In that case, the cell
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(a) (b)

Figure 3.4: (a) Meniscus profile of liquid wetting the space between electrode and disk post. (b) Meniscus

profile of liquid at the bottom surface of the disk.

was filled at 20 Torr above atmospheric pressure for about 14.733 hours. The total liquid Nitrogen

was 1.311 cc which is below the bottom of electrode plate. We can see that the TDO frequency

jumped significantly. That indicates that there was dirt inside the capacitor gap that attract the

liquid Nitrogen.

Figure 3.3 also tell us the dynamic of the filling process. In the beginning, the frequency

dropped rapidly. This is the saturation process. Once the Nitrogen is saturated, it fills the reservoir

underneath the cell. The volume of this reservoir is about 1.36 cc.

3.4 Capillary

We need to investigate the dynamics of liquid Helium and liquid Nitrogen inside the cell. The liquid

will coats all surfaces in the cell including the surfaces of the disk and electrode. We are focusing

our investigation on the case when the liquid level is approaching the gap between the electrode

and the disk. At that position, the liquids is not only rising outside of the electrode hole but also

rising in the region between the electrode and the disk post. The situation is interesting because

the liquid level inside could be higher than liquid level outside of the electrode hole.
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The liquid has surface tension along the film surfaces. The pressure different accross an interface

between liquid and gaseous phase can be expressed by Young-Laplace equation. It is

∆P = γ

(
1

R1
+

1

R2

)
(3.3)

which γ is the surface tension, and R1 and R2 are the principal radii of curvature of the liquid

surface. For surface rising in gravity, the pressure difference is essentially the pressure difference of

gas pressure and hydrostatic pressure of liquid at the depth z. The curvature radius of the liquid

can be calculated by a small curved sector. This curved sector has small angle dθ, radius R1 and

arc ds along the surface of the liquid. R2 is the hypotenuse of a triangle with the adjacent side

r and angle θ. r is measured from the center of the disk post. The center of curvature is in the

liquid phase, hence the R1 must have negative sign. The liquid is on the positive side of θ so we

have negative minus sign on Young-Laplace equation. We can rewrite equation 3.3 as

P − ρgz = −γ
(
cos(θ)

r
− dθ

ds

)
(3.4)

where P is the pressure of the gas and z is the vertical distance of element ds measured from

liquid level of liquid outside of the electrode. Figure 3.4(a) shows the geometry of liquid meniscus.

The Young-Laplace equation tells us the equilibrium shape of curved interface between liquid and

gaseous phase in gravitational field.

We re-scale the Young-Laplace equation in the units of capillary length. Hence, we have

λc =

√
2γ

ρg
(3.5)

Hence, we can write equation 3.4 in term of λc as

Pλc
γ
− 2

z

λc
= λc

(
dθ

ds
− cos(θ)

r

)
(3.6)

We can calculate the height of liquid level inside of the columns of electrode and get the picture

what is the shape of the liquid surface. We start calculation at the contact point between liquid

and post wall (z = 0) and stop at the contact point between liquid and electrode post wall. The

pressure value is obtained from the meniscus profile calculation using equation 3.6. We use it to

calculate the vertical distance between the flat surface and z = 0 point using hydrostatic pressure

equation. We also calculate the liquid meniscus at the bottom surface of the disk using similar

calculation procedure. The meniscus liquid at the bottom surface of the disk is shown in figure
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Properties Helium Nitrogen

γ (N/m) 0.00028835 0.008956

ρ
(
kg/m3

)
146.24 808

λc (m) 0.000634 0.001504

Table 3.1: Table of the capillary parameter of liquid Helium-4 and Nitrogen.

3.4(b). There are 2 types of liquid that we use in the calculation. They are liquid Helium at 2.176

K and liquid Nitrogen at 77 K. Table 3.1 shows the properties of both liquids.

The gap will be filled with liquid in three different situations as shown in figure 3.5. They are

1. Electrode wick. This is an instability situation of liquid. It is happen when the liquid meniscus

from the bottom surface of the disk meet the liquid meniscus at the space between electrode

and the disk post.

2. Extend gap. The capacitor gap also can be filled with liquid when the horizontal end of

liquid meniscus at the bottom surface of the disk (rh) reach the space inside the gap. This is

happened when rh equal to electrode center hole radius. It is 1.875.10−3m.

3. Disk fill. This is also instability situation of liquid. It is happen when the vertical end of liquid

meniscus from the bottom surface of the disk (zh) meet the liquid level below the electrode

(zl). The zh and zl are equal since the geometry of boundary is similar which is flat surface

and circular surface. It means that the disk fill situation is possible when the liquid level is

equal to twice zh.

We calculate the liquid level when the three situations occur for liquid Nitrogen and liquid

Helium-4. That is the critical liquid level (hc). We measure the critical liquid level in term of

vertical distance between the liquid flat surface and the bottom surface of the disk. Table ?? shows

the critical liquid level at the three situations for both liquids. The thickness of electrode and

the capacitor gap size are 1.5.10−3m and 30.10−6m, respectively. Hence, the combined thickness

of electrode and capacitor gap is 1.53.10−3. This is also the vertical distance between the bottom

surface of the disk and the bottom surface of the electrode (hel). The wicking situation only applied

if the liquid level lower than that distance (measured from the bottom surface of the disk).
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(a) Electrode wick (b) Extend gap (c) Disk fill

Figure 3.5: Three different situations of capacitor gap filled by liquid.

The critical liquid level for liquid Helium and Nitrogen are 1.224.10−3m and 4.023.10−3m,

respectively. The critical liquid level of Helium is lower than hel. It means that the liquid Helium

is already inside the space between the electrode and the disk post. The critical liquid level of

Nitrogen is bigger than hel. It means, the gap will be filled wih liquid Nitrogen when the liquid

level at 3.663.10−3m below the bottom surface of the electrode. This electrode wick situation for

liquid Nitrogen is less likely happen since the liquid is not in the space between electrode and disk

post yet.

When the liquid level of Helium reach the bottom surface of the disk, rh is 1.405.10−3m. It is

smaller than electrode center hole radius. The rh will go even smaller when the liquid level below

the bottom surface of the disk since the hydrostatics pressure is increasing. Hence, the extend gap

and disk fill situation are less likely happen in liquid Helium. For the liquid Nitrogen case, the

extend gap and disk fill situation are the possible situation for filling the capacitor gap. The liquid

meniscus at the bottom surface of the disk reach the space inside the gap when the liquid level is

2.378.10−3m. The vertical end of the liquid meniscus is 0.982.10−3m. It is less than half of the

liquid level. Hence, the extend gap situation is occured sooner than disk fill situation.

The position of liquid level corresponds to the liquid volume that has been transferred into the

cell. We have the record of filling process than contain information of the filling rate and filling time.

Hence, we can verify the liquid level calculation with the liquid volume that has been transferred.
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3.5 Gap size expansion

The capacitor gap is changing as cell temperature changes. Different parts of the resonator will

expand their length in many differrent ways depending on their thermal properties. The gap size

expansion is determined by the expansion of the disk post and the electrode plate. The sapphire

disk with sapphire disk puck is supported by a Berrylium Copper (BeCu) post. The disk and

Copper (Cu) electrode plate create capacitor. We calculated the thermal expansion of BeCu and

Cu from room temperature to liquid Helium and liquid Nitrogen temperature to know the capacitor

changes as a function of temperature. We verify the calculation by calculating the TDO frequency

changes as a function of temperature.

3.5.1 The thermal expansion

We used 3 equations of thermal expansion since the cell material are consist of sapphire, Copper,

and Berrylium Copper. The linear thermal expansion of BeCu as a function of temperature t can

be expressed as

αBeCu(t) =


−316.68.10−5 if t < 24K,(
−3.115.102 − 0.44498 t+ 1.0133.10−2 t2 − 2.4718.10−5 t3 + 2.6277.10−8 t4

)
.10−5 otherwise.

(3.7)

Hence, the final length of BeCu as a function of temperature is

LBeCu(t) = Lb293 + αBeCu(t) Lb293 (3.8)

where LbRT is the length of the disk post at room temperature (293 K).

The linear thermal expansion of sapphire as a function of temperature t can be expressed as

αs(t) =


(
−78.85− 2.2346.10−2 t+ 1.0185.10−4 t2 + 5.5594.10−6 t3 − 8.5422.10−9 t4

)
.10−5 if t > 15K,

(5.3± 1.2) .10−13t2.9±0.15 otherwise.

(3.9)

Hence, the final length of sapphire disk as a function of temperature is

Lsapphire(t) = Ls293 + αs(t) L293 (3.10)

where LsRT is the thickness of the disk and the disk puck height at room temperature.
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The linear thermal expansion of Copper as a function of temperature t can be expressed as

Log (αCu(t)) =
(
a+ b Log(t) + c Log(t)2 + d Log(t)3 + e Log(t)4 + f Log(t)5 + g Log(t)6 + h Log(t)7

)
.10−6

(3.11)

where a = −0.606339, b = 276.779, c = −546.197, d = 580.1, e = −355.82, f = 126.778, g =

−24.4575 and h = 1.98124. Hence, the final length of Cu electrode as a function temperature is

LCu(t) = Lc293 + αCu(t) Lc293 ∆t (3.12)

where Lc293 is the length of the electrode room temperature. and ∆t is the temperature different

between room temperature and t.

The linear thermal expansion of Epoxy as a function of temperature t can be expressed as

αEp(t) =


700.10−5 if t < 5K,(
−4.392.102 + 1.525.10−2 t− 2.384.10−3 t2 + 8.665.10−6 t3 − 2.857.10−9 t4

)
.10−5 if 77 ≤ t ≤ 5K.

(3.13)

Hence, the final length of Epoxy as a function of temperature is

LEp(t) = Le293 + αEp(t) Le293 (3.14)

where LeRT is the length of Epoxy at room temperature.

3.5.2 The possible case of gap size changing

We calculated the capacitor gap changes (∆g) as we cooling temperature down from room tem-

perature to 4 K. All three materials thicknesses will be slightly shrinked. The capacitor gap would

expand (∆g > 0) if the upper plate (the sapphire disk) shifting down less than the lower plate (the

electrode plate). The shifted upper plate is caused by thermal contraction of the disk post, the

disk puck and the disk. The shifted lower plate is caused by thermal contraction of the electrode

and the electrode post.

We calculated the thermal expansion the disk post, the disk puck, the electrode and the electrode

post to get the ∆g at liquid Helium and Nitrogen temperature. The disk is connected to the disk

post by the disk puck. Part of the disk puck is inside of the hole at the upper end of the disk pot.

We assumed that this section is either dominated by thermal expansion of disk puck or disk post.

The electrode plate material is a mixture of copper and epoxy. We calculated ∆g using assumption
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that the electrode material is dominated either by copper or epoxy. Hence, we have 4 possible

situations of ∆g. They are

1. The disk post is more dominant than the disk puck. Copper is dominant electrode material.

2. The disk post is less dominant than the disk puck. Copper is dominant electrode material.

3. The disk post is more dominant than the disk puck. Epoxy is dominant electrode material.

4. The disk post is less dominant than the disk puck. Epoxy is dominant electrode material.

For situation 1 and 3, we focused on the full height of the post (hBeCu) substracted by the

disk post hole depth (d). For situation 2 and 4, we focused on the height of the disk puck (hp)

substracted by the disk post hole depth (d).

We calculated thermal expansion for each part of resonator. The thermal expansion of electrode

as a function of temperature (del(t)) is

del(t) =


αCu(t) + αCu(293)

2
(hel −∆) ∆t for situation 1 and 2 (copper electrode),

αEp(t) (hel −∆) for situation 3 and 4 (epoxy electrode).

(3.15)

which hel is the thickness of electrode 1.5.10−3 m. We took average value of two values of thermal

expansion coefficient of copper at room temperature (293 K) and temperature t. The electrode
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Temperature ∆g1 (µm) ∆g2 (µm) ∆g3 (µm) ∆g4 (µm) ∆gf (µm)

4 K 0.594 -1.546 0.047 -2.093 3.558

77 K 1.668 -0.296 1.057 -0.908 3.216

Table 3.2: Table of capacitor gap changes for 4 possible situations and capacitor gap changes based on TDO

frequency changes at liquid Helium and Nitrogen temperature.

post upper end is inside the electrode hole. The height of the electrode post (hep) is

hep = (hp + hBeCu − d)− (gap+ δ) (3.16)

which gap and δ are the capacitor gap size and the thickness of electrode substracted by electrode

hole depth. Hence, the thermal expansion of electrode post as a function of temperature dep(t) is

dep(t) =
αCu(t) + αCu(293)

2
hep ∆t (3.17)

The thermal expansion of the disk puck height as a function of temperature (ddk(t)) is

ddk(t) =


αs(t) hp for case 1 and 3,

αs(t) η for case 2 and 4.

(3.18)

which η is a section of the disk puck that is outside the disk post. The thermal expansion of the

disk post height (ddp(t)) is

ddp(t) =


αBeCu(t) (hBeCu − d) for case 1 and 3,

αBeCu(t) hBeCu for case 2 and 4.

(3.19)

Hence, we can calculate the gap size changes with this expression

∆g(t) = (ddk(t) + ddp(t))− (del(t) + dep(t)) (3.20)

The TDO frequency at room temperature, 77 K and 4 K are 70.1 MHz, 74.8 MHz and 75.3

MHz respectively. Those frequency changing correspond to the gap expansion at 77 K and 4 K by

3.216 µm and 3.558 µm, respectively. Hence, the situation 1 is likely match with the experimental

situation.
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Chapter 4

Electronic Detection Analysis

The analysis of experimental resonances, both third sound and mechanical, are described in chapter

5. Sensitivity ratio differing primarily in phase by π and amplitude. Here, we present the calculation

and experiments for various tests to investigate potential problems. The problems are related to

the electrical connection and noise. The first problem is the TDO cirucit especially for capacitor

geometry is not what we think.We need to have good knowledge of electrical connection as we

changes temperature, especially at the pickup capacitance. PLL detection is also defective since we

observe the unintentional PLL coupling to external frequency. We also found that the noise level is

higher than threshold to observe good resonance signal. Lastly, the poblem is related to the drive

signal. It is not appropriately applied to the film. There could be lack of understanding about the

frequency dependence of the drive voltage.

4.1 Poor electrical connection to pickup capacitor

The experimental signal and theoretical calculation is differ by factor of π. This could be caused

by changes in the electrical connection at pickup capacitance at low temperature. Since the most

critical electrcal connection is based on disk thermal expansion. We have explained in the chapter

3 that the disk is connected to the disk post by the disk puck. The disk puck is clamped to the

upper end of the disk post. This spot is less likely contribute to the poor connection since at lower

temperature the clamped force tend to be stronger because of length contraction. However, the

glue joint between the disk and the disk puck could break due to length contraction and expansion.
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Figure 4.1: The scheme of the drive, pick-up, and stray capacitors. The switch represent the connection to

the ground. The switch is open if there is open connection, otherwise it is close.

Another problem is an inability to monitor The TDO frequency when cooling cell temperature

down. We can only read TDO frequency at room temperature and 77 K as described in the section

4.1.3. We need to get the measurement of TDO frequency and quality factor at temperature

between room temperature and 77 K while the cryostat is in place. This measurement also will

give us the information about the quality of electrical connection.

Figure 4.1 shows a likely situation consistent with the smaller sensitivity and phase shift. The

switch connects or disconnects the disk to ground. If this switch was openning somewhere between

room temperature and 77 K as we cool down, we will see a jump on the TDO frequency and its

quality factor. We will also see low temperature capacitances consistent with the model. When

switch is closed, the Cp dominates the calculation of TDO frequency. The film response has already

presented in the chapter 2. The phase shift could be explained by switch open. At this case, the

drive voltage split between drive and pickup capacitor. Since the area of the drive capacitor is

bigger than pick-up capacitor, the drive capacitance is bigger than pick-up capacitance.

4.1.1 Capacitance consistency

The open electrical connection will change the electronic circuit. The small opening will act like

a capacitor. We investigated the expected capacitance value of several capacitors in the case of

open electrical connection. In the chapter 2, we have calculated the geometry of the drive and

pick-up capacitor. The goal in this calculation is to calculate the pickup capacitance (Cp), the

stray capacitances, and the gap size of the drive and pickup capacitor. The stray capacitors are
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1. Cps is the stray capacitance of pick-up capacitor.

This capacitor is the capacitor between the pick-up electrode and the base and coil inductor.

2. Cds is the stray capacitance of drive capacitor.

This capacitor is the capacitor between the drive electrode and the base. Since the drive

voltage is sent via coaxial cable from room temperature section, this capacitor also include

the capacitance of the coaxial cable.

3. Cs is the stray capacitance in the disk-post connection.

This capacitor is the capacitor that only present when switch open. It represent the gap

between the disk puck and the disk post.

All the stray capacitance is unchanged as we fill and empty the resonator gap cell but the drive

and pick-up capacitance change. We can observe the changing of the film thickness as we observe

the drive and pick-up capacitance changing. The drive capacitance give negative response for the

film oscillation while the pick-up capacitor responding in the different sign. Cd gives no effect to

the Cp. In the chapter 2, we know that the response of drive and pick-up is in the opposite phase

for (2,1) third sound mode.

The total capacitance is the combination circuit of several capacitors. We start the calculation

for switch open situation from a series configuration of Cd and Cds.

C1 =
CdsCd
Cd + Cds

(4.1)

which C1 is the capacitance of the series configuration. The parallel configuration between C1 and

Cs is

C2 =
CdsCd
Cd + Cds

+ Cs =
CdsCd + CsCd + CsCds

Cd + Cds
(4.2)

which C2 is the capacitance of the parallel configuration. The C2 is series with pick-up capacitor.

Hence, the series capacitance C3 is

C3 =
C2Cp
C2 + Cp

(4.3)

The total capacitance is the parallel configuration of C3 and Cps. It is

Ctot = C3 + Cps (4.4)

This value is also the same as

Ctot =
1

(2πftdo)
2 L

(4.5)
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Figure 4.2: The graph of the pick-up, pick-up stray, drive stray capacitance and capacitor gap size as a

function of the post-stray capacitor. The area with the horizontal line is the gap size range. The area with

the vertical line is pick-up capacitance range. The intersection area is the the possible value of gap size and

the pick-up capacitance.

which L is the inductance. When the cell is filled with fluid with dielectric ε, the drive and the

pick-up capacitor change its capacitance by factor of ε. Hence, the total capacitance is

Ctotf =
1

(2π (ftdo −∆f))2 L
(4.6)

which Ctotf is the fluid filled total capacitance.

Using equation 4.4, scaling Ctot, equation 4.5 and 4.6, we calculated Cps. It is

Cps =
1

2

Ctot + Ctotf −

(
(Cds + Cs)Cp

Ad
Ap

+ CsCds

)
Cp

(Cds + Cs)Cp
Ad
Ap

+ (Cs + Cp)Cds
−

(
(Cds + Cs) εCp

Ad
Ap

+ CsCds

)
εCp

(Cds + Cs) εCp
Ad
Ap

+ (Cs + εCp)Cds


(4.7)

since we can replace Cd with Cp
Ad
Ap

, which Ad and Ap are the drive and pick-up capacitor area,

respectively. We calculated the pick-up capacitance by finding the root of the equation below

1

2

Ctotf − Ctot −
(

(Cds + Cs) εCp
Ad
Ap

+ CsCds

)
εCp

(Cds + Cs) εCp
Ad
Ap

+ (Cs + εCp)Cds
+

(
(Cds + Cs)Cp

Ad
Ap

+ CsCds

)
Cp

(Cds + Cs)Cp
Ad
Ap

+ (Cs + Cp)Cds

 = 0

(4.8)
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Hence, we can calculate the pick-up capacitance and the pick-up stray capacitance using input pa-

rameters of the post stray capacitance, the drive stray capacitance, the drive and pick-up capacitor

area, the empty and filled TDO frequency. The input parameters and the calculation outputs have

to be consistent with a small open electrical connection. The gap size of the drive and pick-up

capacitor have to be close to the calculation result of chapter 5 (30µm) and must be larger than the

thickness of kapton paper (12 µm) that we used to clean the gap. It turns out that only the first

five points in the figure 4.2 have the gap size in the range specified above. Those points correspond

to pick-up capacitance between 15pF to 19pF . Hence, only the fifth point has match value of gap

size and pick-up capacitance. However, the Cs is much bigger than capacitance calculation from

appendix (1.4 fF ). Hence, this test indicates the electrical connection is in good condition at low

temperature. We know also that the electrical connection is in the good condition at the room

temperature.

4.1.2 The TDO frequency and quality factor as a function of temperature

The open electrical connection can also be tested by measuring the tunnel diode frequency and its

quality factor as a function of temperature. Since there are many places in the cryostat that can

contract and expand when the temperature is rising and lowering, there is possibility that at some

places inside the cryostat the electrical connection may change. The post-disk contact is the most

suspicious place. We should see smooth changes of the frequency and quality factor if there is no

sudden open electrical connection while cooling or warming. Otherwise, we would see a jump in

frequency or a quality factor having a large dip as the connection opens up.

Tunnel diode (TD) BD-7 is a special diode that becomes more powerful in low temperature.

The LC oscillator at room temperature has a large dissipation. It only turns on at about 77 K. The

quality factor of TDO resonance is better at low temperature than room temperature. We will see

this fact later in the experimental section of this method. The I-V curve of the tunnel diode BD-7

as shown in figure 4.3 depends on temperature. The peak current in the I-V curve is bigger at low

temperature than room temperature.

From the slope of the negative resistance region in the I-V curve, we can calculate the conduc-

tance of the tunnel diode. The conductance of the tunnel diode determines the quality factor of
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Figure 4.3: I-V Curve of Tunnel Diode BD-7 at liquid nitrogen temperature. The bar on the graph represent

the range of bias voltage modulation.

TDO frequency. The relation is

Q(V ) =
1

1

Q0
+ z0 G(V )

(4.9)

which Q0, V , z0 are the quality factor of TDO, the bias voltage and LC oscillator impedance. The

LC oscillator impedance can be calculated using equation 4.10.

z0 = 2 πfLC L ζ (4.10)

with ζ is the ratio between number of inductor coils that connected to the tunnel diode and total

number of coils. fLC is LC oscillator characteristic frequency which is about 72 Mhz. It has a small

shift due to the diode junction capacitance since the capacitance is proportional to (V - 0.6 Volt)n,

where n is between -1/2 and -1/3. The shift can be written as

f0(V ) = fTDO −
(

0.0003
Hz

V

)
V (4.11)

The transmission response signal is a simple Lorentzian. It is

resp(V, f) =
A e(i θ)

i

(
f

f0(V )
− f0(V )

f

)
+

1

Q(V )

(4.12)
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Figure 4.4: the scheme of non-oscillation TDO measurement

If we modulate the bias current of the tunnel diode, in figure 4.3, we can see that we also modulate

the negative resistance. The loss of LC resonance is bigger at positive resistance region (positive

slope in the I-V curve) than negative resistance region. Equation 4.9 and 4.12 show that by

modulating the negative resistance, we modulate the amplitude and phase of the response.

The lock-in output is the synchronous average of the detected (mixed) transmission response

signal. The real part acknowledges that the mixer only picks out one component of the Radio

Frequency transmission.

signal =
1

2π

∫ 2π

0
Re (resp(Vb + Vosin(φ))) sin(φ)dφ (4.13)

which Vb is bias voltage and Vo is the amplitude of voltage modulation.

4.1.3 Measurement of the TDO frequency and quality factor

The block diagram of the measurement can be seen in figure 4.4. The RF signal is produced by

an oscillator HP 8656B. This signal is split into two paths. One path is coupling into the tunnel

diode LC circuit via the third sound drive. There is an attenuator along this path to adjust the

amplitude of this RF signal. The other path is the normal reference path into the mixer. This

direct RF signal is mixed with the RF signal that is sent through the tunnel diode LC circuit. The
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amplitude and phase of signal passing through TDO turn into a DC output of the mixer. The

mixed signal goes into the lock-in that detects changes of TDO transmission signal. The phase

difference between two paths is modified by LC resonance. These changes are measured versus

the RF frequency using equation 4.13. The modulation is produced by resistively coupling an AC

voltage into the bias supply for the TDO. The bar in the figure 4.3 shows the range of bias current

modulation. This changes the bias voltage applied to the tunnel diode by approximately 2mV/V.

4.1.4 Temperature measurement

Between room temperature and 77 K, we cool the cryostat by momentarily adding liquid nitrogen.

We warm the cryostat by room temperature heat conduction back in. We need to have good

temperature measurement sensitivity in the range between room temperature to liquid nitrogen

temperature. The thermometer should be placed close to the cell to obtain best accuracy. The

Bath thermometer is too far from TDO. The cell thermometer is insensitive for the temperature

range around 77 K. Hence, we used the still thermometer to measure the cell temperature. The

still thermometer measures temperature of a warmer stage of the refrigerator. It is connected to

a thermal shield surrounding the cell and has more sensitivity to temperature around 77 K to

300 K. We calibrate the still thermometer to know precisely what the conversion resistance to

temperature is. We need to get the resistance values of room temperature and liquid nitrogen

temperature to start the conversion. The resistance values for 77 K and 297 K are 468.613 Ω and

379.5 Ω, respectively. These are measured by the cryostat wheatstone bridge.

We measured the resistance of an identical sensor as temperature changes. We used the same

resistor as was used in SR510. We put the resistor down on a heat sink then put them inside

a container. We connected the resistor to the digital multimeter to measure its resistance. We

put the liquid nitrogen slowly to the container. We measured temperature using a mercury ther-

mometer. The linear fitting curve have agreement with previous measurement done by Fred Ellis(
dR
dT ≈ −0.100Ω/K

)
. The figure 4.5 shows that the still thermistor resistance changes as a function

of temperature is −0.113Ω/K. In the thermistor theory, this temperature dependence can be model

as disordered semiconductor. The model tells us to calculate resistance as function temperature

including a defect factor γ using

R(T, γ) = R0(γ) exp

(
T0(γ)

T

)γ
− 91.5 Ω (4.14)

49



R = - 0.113 T + 486
R

es
is

ta
nc

e 
(Ω

)

451

452

453

454

455

Temperature (K)
275 280 285 290 295 300

Figure 4.5: Graph of still thermistor resistance as a function of temperature. The line is curve fitting of the

experimental data.

The 91.5 Ω is needed since there is discrepancy between the cryostat wheatstone bridge measure-

ment and the color code of resistance.

Based on room temperature and liquid nitrogen resistance and dR
dT , we calculated the value of

R0(γ), T0(γ) and γ. The value of γ is chosen in such way that derivative of equation 4.14 respect

to T match the slope of fitted line in figure 4.5. Once we found γ, we calculate the value of R0(γ)

and T0(γ). Hence, the conversion temperature to resistance is

R = 435.707 exp

(
15.646

T

)0.867

− 91.5 Ω (4.15)

We can reverse equation 4.15 to obtain conversion resistance to temperature.

4.1.5 Resonance Analysis

We modified a least-squares fitting program for third sound and mechanical resonances to analyze

the modulations of the TDO transmission. The response signal is measured by calculating the

difference between two responses of drive signal. For each response, signal we first need to measure

the differential conductance (G). We measure two values of G that correspond to two values of the

tunnel conductance at the upper and lower limit of the bias voltage modulation.

We read voltage bias using a digital multimeter as connected to the HP 3325 signal generator

and the tunnel diode. We modify the bias voltage with low frequency (0.07 Hz) to capture the
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Figure 4.6: The HP3325A is employed to modulate the bias voltage. The bias voltage is read by Dgital

Multimeter (DMM).

sinusoidal changes of the bias voltage. We took average value of it for 10 cycles of modulation to

get good statistic value of G. We used the average bias voltage to calculate G. Since it depends on

the value of bias current, we calculated it using the value of bias voltage, bias resistance (RB) and

feedback resistance (RF ).

IB =
Vin − VB
RF

− VB
RB

(4.16)

which Vin is the input voltage from the HP 3325 signal generator.

Vin = Vo cosΦ (4.17)

The oscillatory input voltage near the peak can be expressed as

Vin = Vo

(
1− 1

2
Φ2

)
(4.18)

The bias voltage also follows the dynamic of Vin, so we can write it as

VB = Vo − αΦ2 (4.19)

which α is the curvature of cycle peak versus phase. Hence, the G is

G =

∂IB
∂Φ
∂VB
∂Φ

(4.20)

G(V0) =

1

RF
(−VoΦ)−

(
1

RF
+

1

RB

)
(−2αΦ)

−2αΦ
(4.21)
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So, we can simplify the equation above as

G(V0) =
1

RF

Vo
2α
−
(

1

RB
+

1

RF

)
(4.22)

Now, we use the G value of two different the bias voltages in equation 4.12. The equation 4.13

can be approximate to the more simple form for small bias voltage oscillation.

resp(Vb + ε, f) ≈ resp(Vb, f) + ε
∂ (resp(Vb, f))

∂Vb
+ ... (4.23)

which ε is equal to Vosin(φ). The derivative of the respond function with respect to the bias voltage

can be expressed with difference quotient.

∂ (resp(Vb, f))

∂Vb
=
resp(Vb + Vo, f)− resp(Vb − Vo, f)

2Vo
(4.24)

The equation 4.13 can be written as

signal =
1

2π

∫ 2π

0
sin(φ)

[
resp(Vb, f) + ε

∂ (resp(Vb, f))

∂Vb
+ ...

]
dφ (4.25)

The first term is the integration of sine function from 0 to 2π that give us a zero. The second term

is the integration of squared of sine function from 0 to 2π that give us factor of one-half. Hence,

the signal is

signal =
1

4
[Re(resp(Vb + Vo, f)−Re(resp(Vb − Vo, f)] (4.26)

This is not an exact calculation since we are using G(Vo) instead of 〈G〉Vosinθ. The other reason

is the Taylor expansion. We only used the second order of expansion to approximate an equation

4.25. Those approachs are primarily afffect the amplitude of the response signal. The value of TDO

frequency is unchanged since it is where the response occur. The quality factor is also unchanged

since it is quantify how wide the response is.

4.1.6 Results

We measured the frequency and quality factor as a function of temperature as we cooled temperature

down from room temperature to liquid nitrogen temperature. We also took similar measurement

as we raised temperature up, from liquid nitrogen temperature to room temperature. We put

nitrogen slowly to the bath in such way that the temperature will be cooled down slowly. We

stopped putting nitrogen when we reached temperature that we want to be measured. Since this
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Figure 4.7: The graph of frequency of TDO and quality factor versus temperature as the bath temperature

raising up and lowering down.

is not an equilibrium, the temperature will be changing as we do the measurement. Hence, we

decided to take measurement when the temperature has flattened out, before it rises up again. For

measurements in the other direction, we just let the bath temperature rise up since the temperature

changing is slow enough to do the measurement.

We analyzed the signal from bias voltage modulation by fitting it to the theoretical model. We

applied the AC voltage at 1 Volt and 4430 Hz to modulate the bias voltage. There is insignificant

jump of the frequency and quality factor as in figure 4.7. The only issue is a hysterisis in the

frequency graph. But, we think this issue is not due to poor electrical connection where we expect

either a rapid change or a dip in the quality factor graph. The hysterisis is due to poor thermal

contact. The cell temperature response lags behind the still and bath temperature. Hence, we can

conclude that there is no loose connection in the circuit. It agrees with the conclusion of section

4.1.2.
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Figure 4.8: The experimental setup for investigating the influence of external signal to the lockin range of

Phase Locked Loop system.

4.2 The Filter Capacitor

4.2.1 Introduction

The sensitivity ratio problem might also be explained by an external signal interfering with the

operation of the Phase Locked Loop (PLL). The external signal coming from the reference could

get into the PLL through several paths. In this section, we identify those paths that are most likely

alternative paths to the intended feedback loop.

4.2.2 Experiment

The external signal that potentially interferes with the tunnel diode frequency is the signal that

has frequency close to the TDO frequency (74 MHz). The cryostat is completely shielded by thick

metal walls of the dewar, so feedback paths must be through electrical connections that go from

inside to outside. Hence, we test several paths by intentionally applying 74 MHz signal. Those

paths are the drive, the drive with and without the 3X-Box, the bath level detector circuit, the

mixing chamber thermometer circuit and many other sensors from the electronic rack to inside the

cryostat. We applied 74 MHz to these paths and varied the signal amplitude and measured the

lock-in range of the PLL system.

The signal generator used for the PLL is split and is connected to an attenuator. The attenuation

magnitude can be varied from 0 dB to 120 dB. The attenuation at 0 dB corresponds to 224 mV

signal amplitude. Each path will respond differently. The signal is then connected to each path.
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Figure 4.9: The lock-in range frequency as a function of external amplitude of input signal for the drive with

the 3X-Box path and PLL feedback on.

Then, we set the amplitude of the signal. For each amplitude, we vary the frequency on the Lock-in

SR 530 through the TDO frequency to observe the lock-in range. It is the DC output of mixer

signal. We repeat the experiment with no PLL feedback.

We can see the changes of lock-in range as a function of the external signal amplitude as shown

in figure 4.9 for the drive capacitor with the 3X-Box path. There is a region where the lock in range

stays almost constant as the external signal amplitude changes. It means that the TDO lock-in

range frequency is not affected by the external signal. That region is region A. There is also range

where the lock-in range changes as external signal amplitude changes. We call this range as region

B. Hence, we can find the minimum of external signal amplitude that can modify the TDO lock-in

range frequency. It is the value of external signal amplitude in the region B that has lock-in range

frequency equal to the lock-in range frequency in the region A. It can be calculated by power law

fitting to the data points in the region B. The transition region between region A and B may be

the region where the actual path is more dominant than the tested path.

The table 4.1 shows the minimum of external signal amplitude that can alter the lockin range

of PLL for the different paths. The Feedback Off setup is the setup by excluding the intentional
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Amplitude (V)

Path Feedback On Feedback Off Filter

Drive capacitor
1.86.10−4 6.96.10−6 Without

5.80.10−3 < 2.24.10−7 With

Drive capacitor with the 3X-Box
4.94.10−3 3.94.10−4 Without

6.82.10−2 1.51.10−4 With

Bath level detector
> 2.24.10−1 3.68.10−2 Without

> 2.24.10−1 8.59.10−4 With

MC thermometer
4.26.10−2 7.26.10−3 Without

> 2.24.10−1 1.13.10−3 With

Electronic rack
> 2.24.10−1 1.46.10−2 Without

> 2.24.10−1 1.61.10−1 With

Table 4.1: Minimum of external signal amplitude that can alter the lockin range of Phase locked Loop for

different paths. The normal setup for the experiment is sending the frequency through drive capacitor with

the 3X-Box and using the feedback.
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Figure 4.10: 100 pF filter capacitors are installed parallel to the drive capacitors.

PLL DC feedback loop. The less amplitude means the most sensitive path for unintended external

feedback signals. The most sensitive path is the drive capacitor path. It is followed by drive

capacitor with the 3X-Box path. In the third sound experiment, we usually use the drive capacitor

with the 3X-Box path.

4.2.3 Filter considerations

We tried to improve the detection system by installing a filter for the unintended feedback signal.

This filter is a capacitor placed in parallel to the path in question. Since we have more identified

the drive path as the most sensitive path, we put the capacitor in parallel with that path. The

capacitor has to have small size to be fit in the outside of the cell wall. It also has to work at low

temperature. Its capacitance can not be too big that the drive signal (<≈ 35 KHz) is attenuated.

Its capacitance also has the value that can avoid any resonances around 74 MHz.

We calculated the impedance as a function of filter capacitor. We call the impedance of LC

circuit as z1. The connection cable has an impedance of z0 and electromagnetic velocity of v. We

can write the voltage and current as a function of length that propagate along the cable as

V (x) = V+ exp(−i kx) + V− exp(i kx) (4.27)

I(x) =
V+

z0
exp(−i kx)− V−

z0
exp(i kx) (4.28)

which V+ and V− are the amplitude of the wave propagating to the right and to the left, respectively.

At x=0, the current equal to zero since the external impedance is infinity. Hence, we can have the
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Figure 4.11: The electronic circuit of filter capacitor.

relation

V+ = − V− (4.29)

We introduce x as ω
ω0

, λ as ω0 d
v and ς as z0√

L
C+Cc

which ω0 is equal to (L (C + Cc))
−1. C is the

total capacitance that includes the pick-up capacitance and stray capacitance. Cc is the coupling

capacitance which is the capacitance of the electrode backside. We also add the 100 pF filter

capacitor (Cf ) in the equation to be

tan(xλ)

ς
=

1
1

1
x
−0.882 x

− 1
xCc

C

− x
Cf + Cd

C
(4.30)

The ratio between Cc and C +Cc is 0.118 and the ratio between Cf +Cd and C +Cc is 8.861.

The RG 58 cable has z0 equal 50 Ω and v equal to 0.67 c. Hence, the value of ς is 0.295. The

equation 4.30 has multiple roots for a given λ. We plot two roots as a function λ. In the figure

4.12, we can see that the filter capacitance makes the two points closer each other especially when

λ equal to 11.4 as shown in the shaded region in figure 4.12. The closer the distance is to the

horizontal assymptote at x = 1
1+Cc

C

, the less influence the drive lead connection will have on the

LC circuit. The crossings represent the lead resonances which would be the worst case, and should

be avoided. Since the frequency might have two different values that is separated by difference

between two roots. In the worst situation, we want to have the separation is close enough since we

want to reduce the inaccuracy of TDO frequency. The experiment drive cable length corresponds

to λ equal 12.7. Fortunately, it is not too close to the worst region. The situation becomes better

with filter capacitor addition since the worst region is farther from experimental λ.
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Experiment drive cable

root #1 with filter capacitor
root #2 with filter capacitor
root #1 without filter capacitor
root #2 without filter capacitor
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Figure 4.12: The root x is the solution of equation of motion of drive circuit. This is also the resonance

frequency of the circuit. λ is scaling length of drive cable. The shaded area is the region where the worst

case happen. It is the region where two roots of the equation of motions become very close to each other.

The vertical dash line indicates λ corresponds to the length of experiment drive cable. Addition of filter

capacitor bring the worst region farther from the experiment situation.
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4.2.4 Experimental result

The filter capacitor was placed in the outside of the cell. It is attached to the side wall of cryostat

with short lead. Since the wall size close to the drive lines has small size that is 0.5 inches wide and

0.8 inches long, the filter capacitor also has to have a small size. It also need to have low dielectric

loss or dissipation factor (DF). Mica capacitors have a DF of 0.005 and 0.0003 when it operates at

60 Hz and 1 MHz, respectively. The power dissipated (P ) by the capacitor (C) can be calculated

as

P = V 2ωC(DF ) (4.31)

which V and ω are the operating voltage and frequency. For a maximum third sound drive, a 100

pF capacitor at 30 Volt drive voltage at 1 KHz, the power dissipated in the capacitor is estimated

to be 1.696.10−7 Watt. This is about the same as the tunnel diode. The power is also expected to

go down at low temperatures.

We use silver mica capacitors from Newark Electronics. Its length is 0.27 inches, width is 0.24

inches and thicknes is 0.18 inches. It has voltage rating of 300 DC Volt, operating temperature

range between -55 C to 125 C and capacitance tolerance of 5%. We tested the capacitor changes as

we cooled down from room temperature to liquid nitrogen temperature. The capacitance changes

ratio per temperature changes ratio

(
∆C
C

∆T
T

)
≈ −9.10.10−3.

We measured again the minimum of external signal amplitude for different feedback paths using

the technique described in the previous section. By adding the filter capacitor, we have increased

the minimum of external signal amplitude on the drive capacitor path. We found that the minimum

of external signal for the drive path with the 3X-Box and feedback on with filter capacitor is bigger

than without filter capacitor. Table 4.1 also shows how important is the 3X-Box to insulate the

signal generator from the cryostat. We can see from the table that the minimum of external signal

of drive capacitor with the 3X-Box is bigger than only drive capacitor.

4.3 Bias circuit plate

4.3.1 Introduction

The TDO circuit needs to have good thermal sink for diode. It also needs to be electrically

insulated. The finger plate where the tunnel diode, resistor, and capacitor are located is not in the
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Figure 4.13: The left figure is old bias circuit plate. The right figure is new bias circuit plate.

stable position. The finger plate is clamped to the cryostat to make good thermal conductance. It

consists of three plate that are clamped together. Insulating spacers between the plates prevent

each plate from being electrically connected. The upper and lower part of the plate are ground,

with the middle part connected to the bias side of the TDO circuit. The heat from the tunnel diode

bias current needs to be conducted through this plate to ground. A large area of the insulating

spacers is needed.

The coaxial wire coming from the top of the cryostat is connected to the parallel configuration

of resistor (RB) and capacitor (CB). The body of the tunnel diode is connected to the middle

plate. The outside of the coaxial wire also grounded to the upper (ground) plate. The TDO signal

depends on the capacitance of bias capacitor. The larger the capacitance, the smaller the amplitude

of bias signal. It needs to be large enough to provide an AC ground for the TDO but not so large

that the TDO signal returned to room temperature is surprassed. We found that the TDO signal

depends on the mechanical stability of the connection on the finger. We built a new set of plates

to improve electrical connection and also preserve good thermal conduction. The new plate have

larger area that makes the thermal conduction better than the old plate. It also provide shorter

heat path from the tunnel diode to the cryostat body. The tunnel diode position in the new plate

is shorter to the inductor. It improves the mechanical stability of the wire connection from the

tunnel diode to the inductor.
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Figure 4.14: The graph of bias plate capacitance versus time

4.3.2 Plate fabrication

Instead of the three plates that are clamped together, we use three plates and the cryostat body as

the third plate (lower plate). We also found from previous experiment that lower capacitance is,

the bigger the bias signal. We assume that the arrangement of two plates and cryostat body with

the spacer act like capacitor. We need to find the right thickness of dielectric to match with the

optimum value of capacitance, which we determined to be 20 - 30 pF of capacitance. The dielectric

material is glass microfiber filter that has thickness 0.65 mm. With the dielectric is 2.5 times bigger

than vacuum dielectric, the capacitance is expected to be about 25 pF.

Heat transfer is an important thing to consider to build this capacitor. Heat from the TDO

must be well transferred to the outer part of the cell which is the base of the refrigerator. This

mechanism needs a medium that has good heat conductivity. The microfiberglass filter paper

is soaked in a grease solution to make good heat conductor material. Grease act as a path for

conducting heat. The grease need to be mixed with Trichloroethylene (TCE) to make the grease

absorb well into the filter paper. TCE will then easily evaporate, leaving the grease behind. We

made a measurement of the actual capacitance. Since there is changing pressure due to the grease

and filter paper relaxation, the thickness of dielectric is changing. The changes of capacitor can be

seen in figure 4.14. We can see that the final value of the capacitance is about 31 pF. Hence, the
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total capacitance including the 100 pF mica capacitor is 131 pF.

The 100 pF capacitor is connected to the upper plate and the center plate. The connection on

the upper plate is grounded using screws that go through the center plate into the cryostat body.

Connection to the center plate made by a small L-shaped brass tab soldered to the center plate.

Another small plate is soldered to the center plate, close to the edge. This small plate is connected

to the coaxial wire coming from the top of the cryostat.

The center plate has a small arm that bends in an angle in such way that the end of the arm is

close the inductor. The tunnel diode is clamped at this end. The inductor shield had to be cut to

make space for this arm. A fine wire connection from tunnel diode to the inductor is shorter than

the previous set up. A second ground wire to the inductor shield since the plate was eliminated

mounted much closer to the inductor.

4.4 Drive amplitude and phase

4.4.1 Introduction

The goal for this experiment is to properly calibrate the 3X-Box and determine its amplitude and

phase for testing sensitivity ratio at mechanical resonance. There is a possibility that the phase and

the amplitude of the drive voltage is different at the signal generator than at the drive electrode

inside the cell. The difference comes coming from the length of wire taking the signal into the

cryostat that has capacitance and resistance that could alter the phase and amplitude of the drive

voltage. Another source of discrepancy is the 3X-Box. The output voltage is about three times

the input voltage. We need to measure the output phase and amplitude as a function of drive

frequency. This information can be collected from the DSP lock-in amplifier that connected to the

3X-Box output. There are two outputs on the 3X-Box that correspond to drive 1 and drive 2.

Each of them is connected to a separate transformer. These two transformers may have different

responses for the same input voltage.

4.4.2 Experiment

The output voltage of the 3X-Box is monitored by the DSP lock-in amplifier to measure phase and

amplitude as shown in figure 4.16. The connection uses one meter cable R58. It has capacitance
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Figure 4.15: The experiment setup for investigating the amplitude and phase of the 3X-Box as a function of

additional capacitor. Normally, the lock-in and additional cable are not in the drive circuit.

Length (meter) Capacitance (pF)

0.33 34.419

1 106.812

1.89 194.430

2.39 224.510

Table 4.2: The capacitance of R58 cable for several lengths.
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Figure 4.16: The experimental value of the 3X-Box output for two different length of cables in the frequency

range between 100 Hz and 40 KHz.

per length 100 pF/meter and impedance of about 50 Ω. The experiment is repeated for different

length of cables. Hence, we can get the profile of t he output voltage for different additional

capacitance values as shown in figure 4.16. Then, we can find the function that fits the profile to

make a correction of the additional load. To get a precise capacitance measurement of the cable,

we measured the reactance of the cable using an impedance meter. Table 4.2 shows the capacitance

for four different length of R58 cables.

4.4.3 Fitting the function

Using the Kirchoff law and voltage divider formula, we calculated the expected output voltage of

the 3X box as a function frequency as modeled by the circuit in figure 4.17. The voltage equation

of transformer as a function of input and output currents (I1 and I2) are

V1 = L1(dI1dt ) +M(dI2dt )

V2 = L2(dI2dt ) +M(dI1dt )

which V1 and V2 are input and output voltage of transformer, respectively. The L1 and L2 are

input and output self inductance, respectively. M is mutual inductance that satisfy M2 = µ2L1L2
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∆C (pF) C (pF) L1 (H) L2 (H) R1 (ohm) R2 (ohm) µ

64.419 579.386 1.30658 11.33611 1305.78 2280.67 0.9965

136.812 633.252 1.27162 11.06313 1301.29 2228.34 0.99648

224.43 658.388 1.26533 10.99798 1335.09 2539.58 0.99631

254.51 690.422 1.25592 10.93386 1321.5 2414.85 0.99636

Table 4.3: The fitting parameters for four different length of R58 cables. ∆C is the additional cable capaci-

tance plus the capacitance of DSP lock-in amplifier.

and µ is coefficent of coupling between two inductor. It has value close to unity for the transformer.

The Kirchoff law for input voltage of the transformer is

Vosc = I150 + I1R1 + V1 (4.32)

Vosc is the AC voltage from the signal generator. The output of signal generator is also connected

in series with an internal 50 Ω resistor. R1 is resistance of the 3X-Box input coil windings.

Vout = I2
1

iωC
+ I2R2 + V2 (4.33)

Vout is the output voltage from the 3x box with extra capacitance C. I2 is a current flowing on

secondary part of the circuit. R2 is resistance of the 3x box output coil windings. I1 and I2 satisfy

the following relation

I1 = Vosc−V1
50+R1

I2 = −V2

R2+ 1
iωC

Using the oscillatory solution of currents I1, I2 and voltage Vosc, we can construct a matrix. It is Vosc

0

 =

iωL1 + (50 +R1) iωµ
√
L1L2

iωµ
√
L1L2 iωL2 + (R2 + 1

iωC )

  I1

I2


Hence, we can find I2 and Vout,

I2 =
Vosc(−iωµ

√
L1L2)[

(50 +R1)(iωL2) + iωL1

(
R2 + 1

iωC

)
+ ω2L1L2(µ2 − 1)

] (4.34)

Vout =
Vosc(−iωµ

√
L1L2

1
iωC )[

(50 +R1)(iωL2) + iωL1

(
R2 + 1

iωC

)
+ ω2L1L2(µ2 − 1)

] (4.35)
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Figure 4.17: The signal generator and the transformer 3X-Box.

∆C (pF) C (pF) L1 (H) L2 (H) R1 (ohm) R2 (ohm) µ

0 549.95 1.3156 11.412 1292.6 2159.3 0.9966

Table 4.4: The six parameters for zero additional capacitor.

There are six fitting parameters in the function to fit the experimental value of the 3x box output.

They are C,L1, L2, R1, R2 and µ. The value of capacitance (C) is the sum of DSP capacitance (30

pF), cable down to cryostat capacitance, filter capacitance (200 pF), drive capacitance (24 pF) and

the extra cable capacitance. We also know the ratio of the secondary and primary self inductance

is about 9. We calculated the output voltage at any frequency. We are mostly interested in the

higher frequencies around at 35 KHz, which is close to the mechanical resonance frequency. We

also calculated the output voltage in the range of the third sound frequency, and confirm that it is

not very frequency dependent.

4.4.4 The true output of the 3X-Box

Table 4.3 shows the fitting parameters for different test cable lengths. The next step is to extrapolate

the six parameters to deltaC equal zero. This is the condition where the experiments are done. A

linear extrapolation gives the result is shown in table 4.4.

We use these values to correct the output voltage of the 3X-Box using equation 4.35 for any

frequency that we are interested in. The amplitude and phase of the output voltage corrects the

sensitivity ratio of the mechanical and third sound resonance signal by more accuratley representing

the drive amplitude and phase.

67



Chapter 5

Experimental Results

The mechanical resonance of the disk and third sound resonance are explained in this chapter. It

is followed by an explanation of the third sound amplification by stimulated condensation results.

We also discuss in more detail the capacitor gap size calibration which is accomplished by filling

and pumping the cell with liquid helium and liquid nitrogen.

5.1 Gap Calibration Result

In chapter 2, we studied how to calculate the capacitor gap size by pumping and filling the cell. We

took measurements of the TDO frequency changes as the cell was filled with liquid helium and liquid

nitrogen. We needed to obtain a more precise capacitor gap size to calculate the theoretical value

of the film thickness amplitude in the third sound mode, since the film thickness oscillations are

monitored by changes in the capacitor dielectric value. This relation is the basis of the sensitivity

ratio.

The figure 5.1(a) and 5.1(d) show the frequency changes as a function of time for liquid nitrogen

and liquid helium filling process. We can see that there is a frequency jump. This jump comes

from the narrow gap of the capacitor being suddenly filled by liquid. Hence, we can calculate the

capacitor gap by analyzing the TDO frequency changes. This frequency jump needs to be corrected

as the jump includes the TDO frequency changes by the capacitor edge wicking, as discussed in

chapter 2.

The pumping process gives more precise details about the capacitor gap size. The frequency
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(a) (b)

(c) (d)

Figure 5.1: (a) The TDO frequency changes as a function of time for filling process with liquid nitrogen.

(b) The TDO frequency changes as a function of time for pumping process with liquid nitrogen. (c) Cell

pressure as a function of time for pumping process after the cell is filled with liquid nitrogen. (d) The TDO

frequency changes as a function of time for filling process with liquid helium.
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change as a function of time is shown in figure 5.1(b). There is a small of frequency jump in the

beginning in the pumping process dug to the liquid level falling below the capillary entrance into

the cell. We also verify this conclusion by looking at the cell pump line pressure as a function of

time as shown in figure 5.1(c). With the liquid level above the capillary, the pressure starats at

about 7 Torr. The liquid keeps being pumped turning into vapor in the fill tube until the liquid

level falls below the filling tube. At this moment, pressure decreases to 3.8 Torr and is almost

constant. The liquid level becomes lower and lower. However, the capacitor gap is still filled with

liquid. Since the capacitor gap is small, it is hard to drain out the liquid from it. When the liquid

becomes unsaturated, the pressure goes down to about zero, as seen in figure 5.1(c) after 4 hours.

However, the frequency jump happened before the pressure went down to this level. This means

that the liquid is drained out from the capacitor gap before it becomes unsaturated.

From the pumping process, we know that the frequency jump is only caused by draining the

liquid out from the capacitor gap. Hence, we can use this frequency jump without any correction-

unlike the filling process-to calculate the capacitor gap size. We use the value of the top of the

frequency jump as fempty and the value of the bottom of the frequency jump as ffilled to equation

2.13 to get the ratio of pick-up capacitor capacitance and the total capacitance (Cpr). The value of

Cpr for liquid helium and liquid nitrogen are 0.758 and 0.588, respectively. Hence, we can obtain the

capacitor gap size using equation 2.16. The capacitor gap size are 24 µm and 31.2 µm, respectively.

However, they come from different run.

The gap size is strongly depends on the frequency jump determination. It require accurate

analysis since the frequency jump occurs are caused by filling several space inside the cell. The

actual frequency jump is the one that occur when the capacitor gap is filled with liquid. Any error

in the size of frequency jump will lead to the error in the sensitivity ratio calculation. We used the

gap size of 31.2µm in the analysis of disk mechanical resonance and third sound resonance.

5.2 Mechanical resonance result

To test the electrical connection and mechanical stability of the resonator, we took measurements of

the mechanical resonance of disk vibration. The measurement had been done in liquid nitrogen and

liquid helium temperature. We drive the disk with less than 1 Vpp X 3 drive voltage. We scanned

the response in the frequency range from 5000 Hz to 18000 Hz. Besides driving both drives, we
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Figure 5.2: The real and imaginary parts of the mechanical resonance signal amplitude at liquid nitrogen

with 0.3 Vpp X 3 drive voltage are shown in figure 5.2(a) and at liquid helium with 0.2 Vpp X 3 drive voltage

are shown in figure 5.2(b).

also test the sensitivity of the drive capacitor by driving the disk with one drive.

In chapter 2, we have analyzed the possible modes of the disk that can be detected. In the

experiment, we are more interested in (2,0) mode. We scan using a Visual Basic program, which is

adjusted to cover an appropriate range for the scan with about 200 number of points. The figure

5.2(a) shows the mechanical resonance signal of the disk for 0.3 Vpp X 3 drive voltage at liquid

nitrogen temperature. The frequency of the mechanical resonance is 17859.66 Hz and quality

factor is 27700. The mechanical resonance signal at liquid helium temperature is shown in figure

5.2(b). The disk was driven by 0.2 Vpp X 3 drive voltage. The frequency of the same mechanical

resonance is 17865.05 Hz and quality factor is 190000. The quality factor is increasing since the

noise level is low at lower temperature. We also test the quality of drive 1 and drive 2. At a

frequency of about 17865 Hz, the signal from the drive 1 and drive 2 look similar. It means that we

have symmetric drive configuration, as expected from the drive electrode geometry of figure 2.1(a).

5.3 Third sound result

We took measurements of the third sound modes for different film thicknesses. We focused on the

(2,1) symmetric and antisymmetric modes. The measurement had been done in the range between

0.15 K and 0.25 K film temperature. We excited the third sound mode with an electrostatic field
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Figure 5.3: (a) The third sound experimental real and imaginary signal and fitted line with heater off at 3.7

nm film thickness with 3 Vpp X 3 drive voltage. (b) The third sound signal with heater off and on at 3.7 nm

film thickness with 3 Vpp X 3 drive voltage and 0.5 µW heater power. The film temperature is 0.25 K. The

mode is (2,1) antisymmetric.

and scanned the possible range of third sound at a given film thickness.

5.4 Third sound amplification

The third sound amplification experiments mainly were performed on (2,1) antisymmetric mode

since the mode has greater amplitude than the (2,1) symmetric mode. The figure 5.3(a) shows

a third sound resonance results with the heater off with 3 Vpp X 3 drive voltage at 0.25 K film

temperature. The film thickness is 3.7 nm. The figure 5.3(a) also shows the real parts of a

resonance with the vapor source heater on and off. This shows how noisy the experimental data

is. However, we are able to fit it to extract the frequency, quality factor, amplitude and phase of

resonance.

Figure 5.3(b) shows the third sound signal with the vapor source heater off and on with 0.5 µ

W. The heater power on corresponds to the helium atom condensation process with approximately

1015 atoms/second condensing into the resonating film on the disk. By condensing more helium

atoms to helium film, the quality factor is increased by 9.2 %. The amplitude resonance also is

increased by 1.8 %. The phase of resonance remains the same. The resonance frequency shifted to

lower frequency by 9.0.10−3 %. Those numbers are coming from the averaged scan of 10 files.
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5.4.1 Measurement uncertainty

The fitting program gives imperfectly fitted result to the noisy scan data. We would like to get a

measurement uncertainty based on the noise level of scan data. It helps us to judge our confidence

in any conclusion that there is third sound amplification by comparing the quality factor between

heater off and on situations.

There are two ways to obtain the measurement uncertainty. First, we can get one by theoretical

calculation that requires a complicated mathematical understanding of the fitting routine used to

obtain the resonance parameters. We also can simulate the resonance signal based on the fitted

paramaters. We chosed to employ the simulation method to obtain the measurement uncertainty.

We generated a number of test files based on the fitted parameters from the fitting program in-

cluding the noise level. The noise was generated with the random number generator in mathcad

using rnorm function. We then fit the files to the resonance paramaters with the same least squares

program. The number of files is 900. We got the distribution of those files parameters as well as

the average value and standard deviation of the distribution.

The quality factor distribution for heater on and off for (2,1) antisymmetric at 0.25 K film

temperature with 3 Vpp X 3 drive voltage are shown in figure 5.4(a). From this, we can include

the error bar in the graph of third sound loss
(
Q−1

)
as a function of third sound amplitude for

(2,1) symmetric and (2,1) antisymmetric mode as shown in figure 5.4(b). Third sound amplitude

is proportional to the square of drive voltage. From figure 5.4(b), we can see that we should choose

the drive voltage that corresponds to the 14 µW third sound amplitude. Since the data shows

that the error bars of loss are lower than the other set-up. That set-up corresponds to driving the

resonator with 3 Vpp X 3 drive voltage. This argument supports our decision to focus on 3 Vpp X 3

drive voltage as shown in figure 5.3(b) to observe the third sound amplification. The figure 5.4(b)

also shows that the highest quality factor can be achieved by applying small drive voltage. This is

an indication of low critical velocities in the third sound resonances.

Since we need to calculate the loss changes as we turn the heater power on, we need to compare

the distribution of the quality factors with the heater power on and off. The distribution of the

quality factors for simulated files of third sound mode on 3 nm film thickness with 3 Vpp X 3 drive

voltage and heater power off and on is shown in figure 5.4(a). We see that the average quality factor

for heater power on is bigger than heater power off. However, it is in the range of twice the standard
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Figure 5.4: (a) The quality factor distribution of heater power off and on for the simulated files of third

sound signal at 3.7 nm film thickness with 3 Vpp X 3 drive voltage at 0.25 K film temperature.(b) The graph

of third sound loss (Q−1) as a function of third sound signal amplitude.

deviation of the heater power off quality factor. The standard deviation of the heater power off

quality factor is 857. We have to get the loss reduction at least twice the standard deviation of the

quality factor to claim that we found the third sound amplification.

Figure 5.5(a) shows the loss as a function of heater power for experimental and theoretical

third sound mode. It is a similar plot as shown in figure 1.6(a) that shows two values of theoretical

quality factor at the unheated temperature (Q0(T0)). The experimental values show insignificant

changes of loss as we turn the heater on. The frequency shift of figure 5.3(b) shows a film temper-

ature rising more than predicted value from section 5.4.2. Figure 5.5(a) also shows that the (2,1)

antisymmetric mode have smaller loss than (2,1) symmetric mode. Previous attempts to obtain the

third sound amplification gave poor results. The quality factors are lower than current attempts.

More uncertainty is observed by considering the error bar size of quality factor as shown in figure

5.5(b).

5.4.2 Frequency shift with temperature

We noticed that there is a third sound frequency shift as we turn the heater on. The shift is

statistically to lower frequency. The frequency shift can be explained by assuming that temperature

warming up as the heater turns on, even though we have designed and built the resonator with
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Figure 5.5: (a) The plot of experimental and theoretical prediction of third sound mode loss as a function

of the heater power. The theoretical prediction using low (104) and high (105) non-thermal quality factor.

The experimental third sound mode are the symmetric (S) and antisymmetric (A) mode. The error bar on

the experimental results come from the simulated files of third sound signal. (b) Similar plot as figure 5.5(a)

with additional two sets of third sound amplification data from Sergei Jerebets [1] and Joshua Eddinger.

The quality factors of two sets additional data are lower than current attempts The error bar from those

two sets of additional data comes from the quality factor distribution of the experimental data.
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good thermal conductivity. The frequency shift normalized by the frequency can be expressed as

∆f

f
=

∆c3

c3
(5.1)

The third sound speed is proportional to the ratio between superfluid component density and

total density. This ratio depends on the temperature. At 3.7 nm film thickness, the changing of

that ratio is about 0.0017 per Kelvin. Another source of the temperature dependence comes from

the thickening film with temperature differences due to the thermomechanical force. It can be

expressed as
∆c3

c3
= −3

S̄∆T

c2
3

(5.2)

The result is 0.0007 per Kelvin. It is smaller than fraction changes by density calculation. It means

that the temperature changes by condensation are mostly caused by changes of superfluid density

ratio.

Using the superfluid density fraction function of temperature, we calculate the corresponding

changes of temperature. From the third sound signal as shown in figure 5.3(b), we found that the

phase shift is 6.8.10−2 Hz to the lower frequency. Hence, the temperature changes was 1.0.10−1 K.

It is more than theoretical prediction value as was explained in chapter 1 which equal to 8.5.10−4

K. The theory uses the Kapitza resistance between 4He and polished copper substrate. However, in

the actual experiment, we used silver-coated sapphire disk. Because there is discrepancy between

experimental and theoretical value of temperature changes, we can calculate the proper value of

Kapitza resistance between 4He and silver-coated sapphire disk. Using equation 1.25, the Kapitza

resistance should be 7.0.107 Km2 W−1 instead of 3.8.105 Km2 W−1.

5.4.3 Scanning method to reduce the measurement bias

The frequency shifting to the low frequency might reduce the accuracy of the scanning data since

the scanning process was performed from lower to higher frequency. This directional bias might

shrink the peak width of the resonance. Therefore, the fitted quality factor is bigger than the

unshifted scan data. To reduce the measurement bias, we scanned from higher to lower frequency

and compare it with the regular scanning process. We did experiment at 3 nm film thickness with

3 Vpp X 3 drive voltage and 0.5 µW heater power. The fitted frequency, quality factor, amplitude

and phase of the third sound signal are shown in the table 5.1.
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Table 5.1: Table of frequency, quality factor, amplitude and phase of the third sound signal

Off Low-High On Low-High Off High-Low On High-Low

Frequency (Hz) 633.676 633.629 633.674 633.608

Quality factor 11512.125 9032.465 6956.6 10981.43

Amplitude (µV ) 10.495 8.95 8.41 9.405

Phase -2.47 -2.64 -2.41 -2.44

We also repeat the experiment at a thicker film. The results are

Off Low-High On Low-High Off High-Low On High-Low

Frequency (Hz) 533.756 533.687 533.745 533.678

Quality factor 9558.725 9738.426 9523.56 9535.56

Amplitude (µV ) 19.82 19.3 20.18 19.58

Phase -2.21 -2.23 -2.1 -2.20

We found the facts from two different film thicknesses that the quality factor increases and

decreases in both scanning processes as we condensed the helium atoms. Hence, it is hard to

conclude that frequency shifting contributes to the quality factor changes since there is inconsistency

in the quality factor changes. This inconsistency is caused by a low signal to noise ratio.

5.4.4 Third Sound and disk mechanical sensitivity ratio

In chapter 2, the sensitivity ratio was calculated. Here, we find the experimental third sound

sensitivity, calculated at different film thicknesses and drive voltages. As mentions there, this low

sensitivity ratio comes from error propagation from the sensitivity ratio of mechanical resonance.

Figure 5.6 shows the sensitivity ratio for third sound mode and disk mechanical signal. The disk

mechanical experimental signal is about twice than theoretical prediction. However, the phase is

off by factor of little bit bigger than π.

The third sound experimental phase of sensitivity ratio also off by factor π. The amplitude of

sensitivity ratio for (2,1) antisymmetric mode is 0.5, which is better than the amplitude of sensitivity

ratio for (2,1) symmetric mode. Hence, the (2,1) symmetric mode not only has bigger loss than
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Figure 5.6: Sensitivity ratio of third sound mode and disk mechanical signal. The ideal SR is shown by

arrows. The circle shows the SR with magnitude 1 for any phase.

(2,1) antisymmetric mode but also has a smaller sensitvity ratio. As discussed in chapter 5.1, the

determination of which frequency we should take to calculate the capacitor gap will influence the

amplitude of the sensitivity ratio. Using equation 2.42 with the information of frequency modulation

of specific mode for third sound (equation 2.40) and mechanical resonance (equation 2.65), we found

that the error in sensitivity ratio amplitude is proportional to the error in the capacitor gap size.

The factor of π most likely comes from lack of understanding how the experimental signal and

theoretical prediction match in term of the phase convention.
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Chapter 6

Conclusion

Third sound amplification can be achieved by condensing helium atoms to macroscopic flow velocity

state of the third sound mode. By having a high quality factor, the third sound amplification can

be significantly observed. We have calculated all possible problems to get an estimation of the

optimum condition that the self oscillation condition happen.

The high quality factor can be achieved by carefully assembling the resonator. We also developed

the electronic detection system to reduce the mechanical vibration that could contribute to the

noise by built the new bias plate. We had a clean capacitor gap, free of dust that could bridge

the electrode plate and the disk. We also calculated the rising of liquid level in the capillary. It is

important to predict the time when the capacitor gap began to be filled with the liquid.

There is a discrepancy between the experimental third sound signal amplitude and phase, and

the theoretical prediction. It comes from a lack of understanding of the electronic system. We

have compiled data of the drive voltage output from the 3X-Box. It helps us to get more accurate

theoretical prediction of third sound and disk mechanical resonance. We had investigated the tunnel

diode frequency and the quality factor as a function of temperature. This experiment supported

the capacitor calculation for investigating the quality of electrical connection. We also reduced the

external frequency interference to the tunnel diode frequency by adding filter capacitor parallel to

the drive capacitor. The minimum of external signal in the path of drive capacitor with the 3X-Box

and feedback on shows improvement compare to without filter capacitor set-up. The calculation of

the stray capacitance has been done. The stray capacitance value is important for calculating the

actual capacitor gap size. The gap size can be calculated by changing the tunnel diode frequency
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as we fill the capacitor gap with liquid nitrogen and liquid helium. The gap size strongly depends

on the determination of which the actual the TDO frequency jump is.

The low signal to noise ratio increased the measurement uncertainty. We got the measurement

uncertainty by calculating the standard deviation of simulated files based on the fitted parameter

of the actual averaged third sound signal. The third sound quality factor amplification is greater

than the measurement uncertainty. However, it is not big enough to be claimed as an amplification.

We found that as the heater power was turned on, the film temperature increased. The changes

of temperature can be calculated from shifted the third sound signal frequency. This process is

dominated by changes of the superfluid component density to the total density as a function of

temperature. The temperature change is greater than theoretical prediction which used Kapitza

resistance between 4He and copper substrate.
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Appendix A

Partial Entropy

A.1 Third Sound Equation of Motion

Third sound has a mechanical component (kinetic energy and van der Waals potential energy) as

well as a thermal component associated with the concentration and dilution of thermal excitations.

Like second sound, the third sound also exhibits propagating thermal fluctuations, but the nature of

thermal excitations [16] [17] and constraint on their mechanical coupling give the thermomechanical

effects within the film some unexpected behavior.

We begin by describing the hydrodynamics equations of motion for third sound and illuminating

the subtley of Bergman’s ”partial entropy” [18]. We then present results of a numerical computation

of the partial entropy for a simplified set of excitations [16] for the purposes of illustrating its

distinction from a generic ”film entropy” which pervaded the subsequent third sound literature

[19]. Variational approaches to third sound [20] [21] correctly include the physics, but as the

understanding of film excitations improves [17], we re-emphasized the hydrodynamic consequence

of partial entropy in the context of the two-fluid model.

We express Bergman’s equation of motion in a form that more intuitively separates the various

terms according to their function since our focus is on the concept of partial entropy [18]. The

calculation has been done in one dimension with all variables approproately film-averaged. The

equation of motions are :

ρ
∂η

∂t
= −ρsh

∂v

∂x
+ Jm (A.1)
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ρhC
∂τ

∂t
= ρshT S̄

∂v

∂x
− LJm − JQ (A.2)

∂v

∂t
= −g∂h

∂x
+ S̄∇τ (A.3)

which η, τ and v are the oscillating thickness and temperature, and superflow, respectively. We

also take consideration that vn =0.

Equation A.1 expresses conservation of mass in the incompressible of film thickness h including

superflow, ρsv, and a mass flux from the film into the vapor, Jm. Equation A.2 expresses con-

servation of thermal energy derived from the consideration of entropy. Entropy is carried by the

normal component. In the third sound mode, the entropy can be diluted by superflow, or otherwise

changed by heat flux through evaporative latent heat, LJm, and heat conduction from the film to

the substrate and the gas, JQ. The equation A.3 expresses conservation of mechanical energy in

the form of Newton’s law. The van der Waals acceleration at the film surface is g. The last term

in the right hand side of equation A.3 is the thermomechanical force due to thermal gradient.

In his works, Bergman include L in the several terms of equation of motion. It is not very

transparent. It results from a careful derivation from the two fluid model including motion of the

normal component. Since vn is zero in the third sound mode, it is more transparanet to put the L

into the single evaporative term in equation A.2. The partial entropy per mass denoted by S in both

equations, comes about through consideration of a fixed areal patch looking down perpendicularly

upon the film. In equation A.2, for example, the total entropy per area, assumed to be a state

variable dependent only on thickness and temperature, Σ(h, T ), has two corresponding partial

derivatives ress arising from its derivative: thermodynamics functions arising from its derivative:

(
∂Σ

∂T

)
h

=
ρhC

T
(A.4a)(

∂Σ

∂h

)
T

= ρS̄ (A.4b)

which C is the film heat capacity per mass, but S̄ rather than ”film averaged entropy”, is a new

quantity combining all the effect of a changing film thickness into the dilution of entropy. A similar

consideration produces the partial entropy in equation A.3. In terms of the more intuitive film

entropy per mass, S, the partial entropy is
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S̄ =
∂(hS)

∂h
(A.5)

This form for the entropy is explicitly pointed out as separate from the other film averaged

quantities in Bergman’s derivation, but seems not to have been properly passed on by subsequent

authors. At low temperatures, the difference between the film entropy and the partial entropy can

be significant. The differences result from the nature of thermal excitations that dominate the

normal fluid component, and depend strongly on both the film thickness and temperature.

The solutions to the equations of motion are rather involved with the detailed substrate and

vapor interactions included for the geometry of interest. For the purpose of illustrating how the

partial entropy comes in, it suffices to say that thermomechanical terms appear in two primary

forms associated with the adiabatic limit. First, the temperature oscillations in the adiabatic film,

and second, the magnitude of the thermomechanical restoring force. Those forms can be expressed

as

τ

T
= − S̄

C

η

h
(A.6a)

c2
h =

ρs
ρ

T S̄2

C
(A.6b)

The equation A.6b also known as the fifth sound speed equation [19] [22] with the partial entropy

substituted. The influence of each of these terms is reduced (and phase shifted) as a result of vapor

and substrate coupling as the temperature rises, but the presence of the partial entropy remains

linked to these terms.

A.2 Film Thermodynamics

There are 3 excitation spectrum exist in the film with low temperature (T<0.75 K) and not too

thin film thicknesses (h>1 nm). They are

1. The surface wave mode (third sound/ripplon spectrum)

2. bulk-like film phonon branches

3. bulk rotons
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The surface wave mode can be dominated by third sound mode or ripplon (quantized capillary)

wave mode. The ripplon wave is the wave that exist in the free surface of superfluid Helium-4. The

dispersion relation of the surface wave mode with surface tension γ is

ω2
surf = tanh(qh)

(
gq +

γq3

ρ

)
(A.7)

The first term of equation A.7 express the third sound spectrum. The capillary wave spectrum is

expressed in second term.

The capillary mode is damped in the direction down into the liquid, the phonon mode become

dominant in the liquid. Its spectrum is

ω2
n = c2

1

((n− 1
2

)
h

)2

+ q2

 (A.8)

The n indeces refers to the phonon branch mode. The maximum number of phonon branches to

include in the thermodynamics calculation depends on temperature. A sufficient number of phonon

modes were included to assure quantitative accuracy for T< 0.75 K. The speed of sound in the

liquid helium is c1. The wavenumber q can be expressed as the sum of wavenumber in the x and y

direction.

When the temperature is raising up, the roton spectrum start to be included in the calculation.

It also important for the purposes of connecting to the thick film limit. The roton spectrum is

ω = ωgap + ~
(q − q0)2

2mr
(A.9)

which ωgap, q0 and mr are 8.65 K, 19.1 nm−1 and 0.16 m4He, respectively.

Layer modes [17] have not been included for simplicity, but would be important in thinner

films. Those three spectra were integrated numerically with the Planck distribution to obtain the

thermodynamics functions for the film specific entropy and specific heat. The partial entropy was

evaluated using equation. The energy for each spectrum is

U =
∑
j

~ωj

e
~ωj
kT − 1

(A.10)

The ripplon energy is calculated in 3D since the ripplon exist at the surface. The phonon

spectrum shown in equation A.8 clearly explain that the calculation of the energy is in x-y plane

(2D). However, the 3D calculation is needed for energy of roton since it is a bulk excitation.
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The energy per mass for 2D calculation is

u =
1

ρhL2

∫ ∞
0

~ω(q)

e
~ω(q)
KbT − 1

1(
2π
L

)2 2πq dq (A.11)

The energy per mass for 3D calculation is

u =
1

ρL3

∫ ∞
0

~ω(q)

e
~ω(q)
KbT − 1

1(
2π
L

)3 4πq2 dq (A.12)

The energy per mass for 3 elementary excitations are shown in figure A.1.

Figure A.2(a) and A.2(b) show the effect of the partial entropy for a range of film thickness

expressed in terms of quantities relevant to the third sound equations of motion.

A.3 Discussion

The partial entropy emerges from the two fluid model applied to films due to unique combination

of the mechanical constraint imposed by the free surface and the thickness dependence of the exci-

tations themselves. As the volume available to excitations expands or contracts with the movement

of the free surface, the nature of the excitations involved dictates the character of thermal response.

Three idealized cases can help clarify this concept, again taken in the adiabatic sound limit and

with the simplified excitation spectrum to emphasize the role of the partial entropy. All three cases

are visible in the numeric data of figures A.2(a) and A.2(b).

Consider first the case where the film is taken as a slab of bulk as would be expected for thick

films at high temperatures. Since the entropy per area grows proportional to the film thickness,

the partial entropy per mass from equation A.5 is just the bulk entropy per mass, S̄ = Sbulk. At

this limit, the dominant excitations are phonon and roton. As mass and heat move around in the

film, the intensive quality of the thermal excitations as the normal component dominates. This is

perhaps the historic reference frame that allowed film entropy to displace partial entropy in the

literature.

Next, consider low temperatures where the very long-wave free-surface excitations are popu-

lated. This is the third sound limit where capillarity is negligible compared to the Van de Waals

force. With ω = q
√
g(h)h, the thermodynamics can be analytically determined. The partial en-

tropy with g(h) ∝ h−4 is S̄ = 3S. This limit has a partial entropy significantly greater than the

film entropy. Converging superfluid at a wave crest not only dilutes the normal component, but
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Figure A.1: The energy per mass of 3 elementary excitations in the superfluid Helium-4 as a function of

wavenumber. There are ripplon, roton and phonon first branch as shown in figure A.1(a), A.1(b) and A.1(c),

respectively. The temperature is 0.3 K and the film thickness is 3 nm.
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Figure A.2: (a) The ratio of partial entropy to the heat capacity as a function of temperature for five film

thicknesses giving the adiabatic temperature oscillations for third sound. (b) The ratio squared of partial

entropy the entropy as a function of temperature for five film thicknesses. They are representing the effect

on the thermomechanical force. The film thicknesses are 1.66, 2, 3, 4.5 and 6.75 nm.

softens the excitation spectrum as the film thickens. The partial entropy expresses this constraint

analogous to adiabatic demagnetization.

Finally, consider the case where all of the thermal energy is associated with the surface exci-

tations having no connection to the thickness. This would be the case of moderate temperature

and thickness dominated by high-q ripplons. This begins around 0.5 K and extends down to where

the ripplons begin to sense the substrate. Here, the entropy per area (σ) is independent of h. The

entropy is

S =
σ

ρh
(A.13)

The partial entropy from equation A.5 is 0. This would also apply to the layer modes.

Surprisingly, the partial entropy for films with h > 6.36 nm has a negative value. Figure A.3

maps this range of thickness and temperature for our simplified excitation spectrum. The curve

line is the line temperature and thickness when the partial entropy become zero. It become zero as

the derivative of excitation frequency respect to thickness become zero. We have investigated the

behavior of derivative of excitation frequency in the region where the surface ripplons dominate.
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Figure A.3: The region within the solid arc shows the range of negative partial entropy predicted by the

simplified excitation spectrum. The shaded region is described in the text. The red and blue lines are the

function of T = To
(

h
ho

)−3/2
and T = To

(
h
ho

)−7/2
, respectively. To is 0.135 K and ho is 2.135 nm.

For ω = α(h)q, the energy per mass in 2D is

u ≈ T 3

hα(h)2
(A.14)

The entropy is

S ≈ T 2

hα(h)2
(A.15)

Hence, the partial entropy from the equation A.5 is

S̄ ≈ ∂

∂h

(
T 2

α(h)2

)
= −2S

h

α(h)

∂

∂h
α(h) (A.16)

We can see from the equation A.16 that the partial entropy becomes negative as the derivative

of excitation velocity respect to thickness becomes positive. We create contour plot of the derivative

of excitation frequency respect to thickness as shown in figure A.4. We are interested in the line

when the derivative becomes zero. This is related to the zero partial entropy. The temperature

corresponds to that line can be determined by looking for the maximum value of dudq versus q graph.

The figure A.3 also shows the temperature and thickness of zero partial entropy. The line shape for

two type of calculations are similar. The only different is the zero partial entropy for the derivative

calculation is sooner than for the complete excitation numerical calculation. Note that at negative

partial entropy, both the thermomechanical force and the temperature oscillations in third sound

would be reversed.

Equation A.16 also explain the behaviour of the liquid helium at low temperature limit. At

this limit, the liquid helium can be treated as 2D film. The entropy is a half of the heat capacity.
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Figure A.4: The contour plot of the derivative of excitation frequency respect to thickness.
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The α(h) which is equal to Van der Waals acceleration for third sound frequency is proportional

to h−3/2. Hence, the partial entropy is three times the entropy. At this limit, the ratio of partial

entropy and the heat capacity is three-half as shown in figure A.2(a).

A.4 Conclusion

A proper treatment of partial entropy within two-fluid third sound hydrodynamics significantly al-

ters the magnitude of thermal effects where surface excitations dominate the population of thermal

excitations. The distinction between film entropy is smaller than the film entropy for intermediate

thickness and temperatures, and larger than the film entropy for all thicknesses at very low tem-

peratures. These conclusions are based on the qualitative character of the excitations and are not

limited to our simplied spectrum.

The region of negative partial entropy at intermediate thickness and temperature is however,

susceptible to the details of the excitation spectrum. Its occurrence in the simple film-ripplon

spectrum illustrates how the reversal of thermomechanical attributes of the two-fluid model could

occur in films. In spite of the reversal, the sign of the modified fifth sound speed remains positive

under all conditions.
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Appendix B

Stray capacitance

We calculated the detail of the several stray capacitances based on their geometry. It helps us to

understand the possible value of the total stray capacitance. They are

1. Capacitance between the disk post and the disk.

The disk post is glued to the disk. The glue may crack as temperature increases or decreases.

The crack can open the connection between post and plate. We calculated its capacitance

using reasonable dimensions. Xiang calculated the perpendicular plates capacitance [23]. The

figure B.1 shows the configuration of two perpendicular plates. The total capacitance per unit

length is

c = cin + cout (B.1)

which cin and cout are the capacitance per unit length between the inner part of the perpen-

dicular plate and the capacitance per unit length between the outer part of the perpendicular

plate, respectively.

The solution for this configuration is obtained by conformal mapping the original plane into

another plane that has two parallel plate capacitors, since the solution for that plane is already

known. cin and cout are

cin = ε
K ′ (kR in)

K (kR in)
(B.2a)

cout = ε
K ′ (kR out)

K (kR out)
(B.2b)
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Figure B.1: The configuration of the perpendicular capacitor to model the capacitance between the disk and

the disk post due to glue crack in the connection point.

which K(k) is the complete elliptic integral of the first kind. The identity of the complete

eliiptical integral is

K ′(k) = K(k′) (B.3)

which k′ is the complementary modulus of k. The modulus and the complementary modulus

are

kR in =
cr

lp+ cr

√
(lp+ cr)2 + d2

cr2 + d2
(B.4a)

kR out =

√√√√√cr(2/3)
(

(lp+ cr)(2/3) + d(2/3)
)

(lp+ cr)(2/3) (cr(2/3) + d(2/3)
) (B.4b)

k′R in =
√

1− k2
R in (B.4c)

k′R out =
√

1− k2
R out (B.4d)

which cr, lp and d are the glue crack gap, the effective disk post height and the effective disk

length, respectively. The effective disk post height is 2rpost which rpost is the post radius.

The effective disk length is the space between the edge of the electrode plate hole (rhole) and

the disk post. It is

d =
1

2
(rhole − rpost) (B.5)
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Hence, the capacitance per unit length of the perpendicular plate is :

c = ε

(
K ′(kR in)

K(kR in)
+
K ′(kR out)

K(kR out)

)
(B.6)

Since the disk post has a circular shape, we assume that we can unfold it to be a sheet-like

shape. The sheet length is the disk post perimeter 2πrpost. Hence, the total capacitance is

C = c (2 π rpost) (B.7)

We can calculate the value of the total capacitance as a function of the glue crack gap cr.

Hence, we can have a good estimation of what the capacitance should be if there is glue crack

in the joint point between the disk post and the disk. For example, the capacitance will be

1.4 fF when the cell empty and the glue crack length is 0.3 µm (1/10 of the capacitor gap

size).

2. Capacitance between evaporator ring and the disk

The evaporator ring is located 1.3 mm above the disk. Its diameter is 9 mm. We used

conformal mapping to map the equipotensial line. The equipotensial line is the real part of

the complex potential.

V = V0 Re

(
ln z+cz−c

ln c+hc−h

)
(B.8)

which z is x+ iy, V0 is the potential amplitude, h is the distance between the surface of the

disk and the ring, c is
√
h(h+D) and D is the evaporator wire diamater. The imaginary

part of the complex potential describes the stream function. This function can be used to

calculate the total charge that can be stored in the capacitor.

Q = ε0 W V0 Im

(
ln z+cz−c

ln c+hc−h

)
(B.9)

which W is the disk diameter. The equation B.9 is evaluated at x=0 and y from −∞ to +∞

since the disk is located along the y axis. Hence, we can rewrite equation B.9 into

Q = ε0 W V0 Im

(
ln iy+c

iy−c − ln−
iy+c
iy−c

ln c+hc−h

)
(B.10)

In the nominator of the above equation we have

ln
iy + c

iy − c
− ln− iy + c

iy − c
= ln (−1) = iπ (B.11)
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Hence, the total charge is

Q =
ε0 W V0 π

ln
(
c+h
c−h

) (B.12)

The capacitance equation is Q = C V0. Hence, the capacitance is

C =
ε0 W π

ln
(
c+h
c−h

) (B.13)

The denominator can be write as

ln

(√
h(h+D) + h√
h(h+D)− h

)
= y (B.14)

We divide the right hand side of the equation above by h/h to be

y = ln

(√
(1 +D/h) + 1√
(1 +D/h)− 1

)
(B.15)

The equation above can be expressed as

√
1 +D/h (ey − 1) = 1 + ey (B.16)

Using the relationship identity of tanh(x) to the exponential function, we can write the above

equation as

tanh2(y/2) =
1

1 +D/h
(B.17)

Since tanh(x) = sinh(x)/cosh(x) and tanh(x) = −1 tanh(ix), we have

cosh(y/2) =

√
1 +D/h

D/h
(B.18)

Hence, y is

y = 2 cosh−1
√

1 + h/D = ln

(√
h(h+D) + h√
h(h+D)− h

)
(B.19)

We substitute equation B.19 into equation B.13 to get the capacitance between evaporator

ring and the plate equation. It is

C =
πεoW

cosh−1
(
1 + h

D

) (B.20)

The capacitance is 0.3 pF when the cell is empty.
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3. capacitance between ring holder and the plate

The ring holder is a metal circle that holds the evaporator ring on the top of the plate.

Because of that configuration, we can write the capacitance between the ring holder and the

plate as

C =
εoA

d
(B.21)

which d is the distance between the ring holder and the plate is 2.5 mm. The capacitance is

0.4 pF .

Hence, we calculated the total stray capacitance that includes the three capacitances and cou-

pling capacitance as mentioned in the chapter 4. The total capacitance is about 2.2 pF .
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