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Abstract:This thesis explores the concept of dynamic vortex drag resulting from Kelvinwave excitations on vortex cores in thin �lms of super�uid 4He. In this system,vortex drag is commonly accepted as a signi�cant mechanism for the dissipationof third sound wave motion; however, current models implementing a static dragforce have been unable to quantitatively explain anomalous third sound free decayresults found in the literature. In this thesis, many possible manifestations ofKelvin wave agitation are explored and are shown to correct the de�ciencies ofexisting static drag theories. It is therefore concluded that vortex drag in thin�lms of super�uid 4He is most likely a dynamic, and not a static, process.
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Ch. 1 Introduction
1.1 OverviewThis thesis seeks to explain anomalous third sound free decay data previouslytaken by the Quantum Fluids Group at Wesleyan University. It will attemptto further knowledge about the mechanism of pinned vortex drag in third sounddissipation processes.

Format:1. Chapter 1 will provide a brief introduction to the physics of super�uids,quantized vortices, third sound, and wave motion present on quantized vortexcores. It will also provide examples of anomalous free decays and discussprevious attempts at solving the problem that we concern ourselves with.2. Chapter 2 will propose and implement a model used to describe the dynamicinteraction of a quantized vortex tip with the resonator substrate. The modelwill be able to qualitatively demonstrate many of the characteristics we desire,but will ultimately fail in its rigor and completeness.3. Chapter 3 will derive the pinning force (critical velocity) associated with astraight vortex moving over an arbitrary three dimensional resonator surface.4. Chapter 4 will propose and implement a more rigorous quantitative model fordynamic vortex interaction with the substrate that will be seen to be capableof explaining previously unreconcilable experimental free decay data.1



5. Chapter 5 will summarize the important conclusions of this thesis and identifyfuture work that is necessary to further verify the proposal that dynamicvortex drag is an important physical phenomenon in thin-�lm super�uid 4Hesystems.1.2 Super�uidsWhen the temperature of 4He is lowered below its λ point of 2.17 K, the 4Heatoms (Bosons) collapse into a macroscopic quantum-mechanical state, forming anovel state of matter known as the super�uid. Since the behavior of 4He atomsbelow the λ point is dominated by their shared quantum-mechanical state, whichovercomes any interatomic interactions, the super�uid state allows one the abil-ity to experiment on a macroscopic quantum-mechanical system. Below the λpoint of 4He, the resulting super�uid system can be modeled as consisting of twodistinct �uid components: the super�uid and the normal �uid. The super�uidcomponent, as a result of being in a macroscopic quantum-mechanical state, ex-hibits interesting physical properties such as zero viscosity and in�nite thermalconductivity. The normal �uid component can be qualitatively conceived of asa soup of thermal excitations. Within this model, each of the two componentspossesses its own velocity at each point within the �uid, as well as its own fractionof the system's mass density. While it is often useful to think of the super�uidsystem in the terms of this �two-�uid model�, it is important to note that thesystem itself does not physically separate into two �uids, and that the utility ofthis model lies in its ability to facilitate conceptualization of the observed phys-ical properties of the super�uid. All experiments referred to in this thesis wereperformed at temperatures below 1 K, ensuring that the thin-�lm 4He system wasdominated by the super�uid component, and that the normal �uid componentwas negligible [1]. 2



1.3 Third Sound and Free DecaysA property of super�uid 4He that is useful to note is its ability to be uniformlyadsorbed as a very thin �lm over the surface of a container. These thin �lmspossess the ability to propagate waves of many types through them. For ourparticular purposes, the most important type of wave that super�uid thin �lmscan propagate is the wave type known as �third sound� [1]. Third sound waves canbe thought of as the molecular analog of shallow water waves, sloshing back andforth and oscillating in a predominantly longitudinal manner. Continuing withthe shallow water wave analogy, there must be a downward restoring force thatallows these waves to propagate. In the shallow water wave scenario, this restoringforce is the earth's gravitational force upon the ocean. Clearly, at the molecularlevel gravity is negligible, so the Van Der Waals force with the substrate (Auplated SiO2) turns out to be the dominant restoring force in the system. In thesuper�uid system, the normal �uid component becomes clamped to the substratevia the scattering of thermal excitations; that is, its local velocity, −→vn, is zeroeverywhere within the �lm. It should be noted that the longitudinal displacementof the super�uid in third sound oscillations far exceeds its vertical displacement,thereby allowing the super�uid to be treated as an essentially two-dimensionalsystem, greatly simplifying the required �uid mechanics.The experiments performed by the Quantum Fluids Group at Wesleyan Uni-versity, and with which we concern ourselves at present, involved electrostaticallydriving a resonator cavity containing a thin �lm of super�uid 4He uniformly ad-sorbed over the resonator surface. Third sound wave motion was driven up toa particular amplitude, and then allowed to decay away when the driving forcewas turned o�. How these third sound oscillations decayed was then studied. At�rst thought, one would expect these third sound waves to experience an expo-nential decay as a result of thermal oscillations in the super�uid resulting from3



the relative motion of the super�uid component and the normal component. Ona semi-log plot, such an exponential decay would appear as a straight line, with alinear decay constant, Q. While many of the free decays can be described by thissimple exponential decay model, a signi�cant number of them exhibit anomalousbehavior.In studies performed by Anand Swaminathan '09, these anomalous free decaycurves were catalogued and analyzed [2]. In his work, he found that there weretwo types of anomalous free decays observed: the �kink-type� (Figure 1.1) and the�bulge-type� (Figure 1.2).

Figure 1.1 An example of a free decay exhibiting the two decay constant�kink-like� behavior on a semi-logarithmic plot.
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Figure 1.2 An example of a free decay exhibiting the �bulge-like� transitionbehavior between decay constants on a semi-logarithmic plot.The primary purpose of the work performed by Anand Swaminathan was toidentify quantized vortex motion as the mechanism responsible for the deviationsfrom the expected simple exponential decay behavior. Ultimately, Swaminathandid not manage to completely resolve the issues behind the mechanism in theseanomalous free decays; his model was able to explain the bumps, but not in aquantitatively consistent fashion. The conclusion of Swaminathan's thesis heldthat quantized vortex motion is still the dominant mechanism responsible forthese kinds of anomalous free decay curves, however the exact dynamics of thesevortices are still poorly understood. It is this issue that we will try to resolvein the following chapters, but �rst we must become familiarized with the generalphysics of quantized vortices prior to discussing their drag behavior.1.4 Super�uid VorticesAll super�uid vortices can be characterized by a quantized circular �ow withclosed streamlines around a vortex core. This quantized circulation, κ, is simplythe quantized version of the Kelvin circulation constant of classical �uid dynamics:5



κ =
¸−→vs ·
−→
dl = n h

m4
(1.1)where −→vs is the velocity of the super�uid, h is Planck's constant, m4 is the massof a 4He atom, and n is a positive integer representing a speci�c quantized state ofcirculation [3]. Equivalently, the velocity �eld of a straight, quantized vortex canbe expressed in the same manner as a classical vortex, except that it also carriesalong the quantization condition in its velocity �eld:

−→v = n h
m4r

φ̂ (1.2)where r is the distance from the center of the vortex [3]. The unit vector φ̂denotes the direction of rotation (circulation), where positive φ implies a right-handed rotation when viewing the vortices from above. Clearly, by glancing atEquation 1.2, one can see that there is a singularity as r → 0, i.e. inside of thevortex core. Little is known about the nature of the interior of a vortex coreexcept that it is a region where anomalous behavior occurs. Therefore, Equation1.2 can only be valid up to the core radius a0. For super�uid vortices in 4He, thecore radius has been experimentally measured as approximately a0 = 1.3 Å [3].Regarding the quantum number n appearing in Equations 1.1 and 1.2, super-�uid vortices with n > 1 are never seen experimentally. The reason for this liesin the energetic favorability of a single n > 1 vortex to break up into two vorticesof n = 1, as a single vortex of n > 1 represents a higher energy state than a pairof singly-quantized vortices.Continuing the analogy with classical vortices, a quantized vortex can be con-sidered as a physical object due to its inherent quantum stability, and when ex-posed to a perturbing �ow it experiences a lateral force known as the Magnusforce [3]. The Magnus force arises when the rotational �ow of the vortex interactswith a perturbing �uid �ow. Due to the rotation of the vortex, the �ow velocityon one side of the vortex will be greater than the �ow velocity on the opposite6



side of the vortex, resulting in a Bernoulli pressure di�erence on opposite sidesof the vortex. In our particular case, the oscillating third sound �ow acts as thisperturbing �ow source that the quantized vortex encounters, and it consequentlyinduces a Magnus force that must be taken into account in the vortex's resultantmotion.

Figure 1.3 Illustration of the Magnus force on a vortex.The Magnus force associated with a vortex that moves at a velocity −→vv is givenby [3]:
−−−−−→
FMagnus = ρκh0(

−→vs −−→vv )× k̂ (1.3)where ρ is the density of 4He, h0 is the length of the vortex core (height of thethin-�lm), and −→vs is the background third sound �ow at any given time in a thirdsound oscillation.Another important aspect of super�uid vortices is their ability to pin to defectsites on a substrate. In early attempts to explain the �bulge-like� anomalousfree decays, Fred Ellis and Hai Luo posited that the critical velocity phenomena7



observed in free decays were the result of the pinning and unpinning of quantizedvortices from the resonator substrate. In this �rst and simplest model, vorticeswere assumed to be pinned to surface roughness or defects (local energy minima)up to the point that a critical third sound �ow velocity, vc, was reached. At thispoint, the third sound �ow would become strong enough that the Magnus forceexerted on the vortex core would be su�cient to depin the vortex from the defectsite, setting it free to drag along the surface of the substrate, with the criticalforce dissipating energy in a manner akin to a classical frictional force. When theoscillating third sound �ow then decreased below this critical velocity, the vortexwould repin to the nearest defect site, and the process would repeat itself at thebeginning of the next third sound cycle.It should be noted that this simple static drag force model can be used tosuccesfully explain energy loss in high amplitude �ows [4], and is also qualitativelycapable of explaining the presence of the �bulge� in the anomalous free decays [2].However, as mentioned previously, one cannot arrive at quantitatively accurateexplanations of the bulge behavior by invoking just a simple static drag force.In order to understand the power dissipated by a vortex undergoing a staticdrag force, one needs to precisely understand the resulting motion of a vortexgiven the sum of the forces acting upon it. While vortices may be treated likeobjects due to the extent of their cores, the common theoretical assumption isthat a super�uid vortex core possesses no mass, and therefore cannot have anynet force exerted upon it, lest it feel an in�nite acceleration. Using Newton'sSecond Law, and balancing all of the forces acting on a vortex core:
−→
Fv = ρκh(−→vs −−→vs )× k̂ − f0v̂v = 0, (1.4)where f0 is the frictional drag force that acts in the direction opposite to thevortex's motion, one can derive the components of the vortex velocity perpendic-8



ular and parallel to the third sound �ow in the steady state [2]:
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One must keep in mind that Equation 1.5 is only valid for a static drag force.Since past simulations involving this static drag force model have failed at quan-titatively describing many experimental phenomena, we seek to modify the vortexdynamics so that behavior other than just a static drag force is observed. Thequestion of how one can physically argue that a vortex will experience somethingother than a static drag force is then the next concern that must be addressed.We propose that the dragging of the vortex across the resonator substrate doesnot simply dissipate energy, but also makes the vortex less likely to repin to thesubstrate. The simplest way to think of this argument is by imagining the dragforce acting as a perturbation on the vortex tip that generates wave disturbancesthat propagate up the vortex core. This wave agitation results in an additionalnonzero kinetic energy on the core, which can, in many conceivable ways, make itmuch more di�cult for the vortex to repin to a defect site. This mode of thinkingwould then result in the drag force being decreased as a result of the draggingprocess, and transform the static drag model of vortex motion into one involvinga dynamic drag force. The next logical step in this approach is to describe thewave motions that will be present on a quantized vortex core so that we mayspeak quantitatively about the amount of additional kinetic energy that would becreated, and retained, on the core by such a disturbance.
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1.5 Kelvin WavesThere are a number of wave types that have the ability to propagate on avortex core. The most studied, and arguably most common type of wave presenton a classical vortex core is the Kelvin wave. While the theory of Kelvin waveswas originally formulated for a classical vortex core, Kelvin wave modes have beenexperimentally observed in bulk 4He [6]. It is reasonable to assume that vorticesin the thin-�lm setup are also capable of propagating Kelvin wave modes on theircores.In 1880, Lord Kelvin derived the dispersion relation for waves on a vortex core,of which there are two branches: a slow branch and a fast branch [3,7,8] . Thetwo branches obey the following dispersion relation:
ω±(k) = κ

2πa

(

−1∓
√

1 + (ka)K0(ka)
K1(ka)

) (1.6)where Kn is a modi�ed Bessel Function of order �n�.Here (+) denotes the fast branch with waves moving with the circulation ofthe vortex, (−) denotes the slow branch moving opposite the circulation of thevortex, a is the core radius, and κ is the quantized circulation constant.It is important to both qualitatively, and quantitatively, understand the con-tribution that each branch provides to the total vortex wave motion. In 1985,a seminal paper on quantized vortex motion in super�uid 4He was published byK.W. Schwarz [5], in which he advanced much of the understanding of quantizedvortex motion to where it stands today. The most important contribution madewith regard to our present work is his description of vortices following the localinduction approximation. In the local induction approximation, one can deter-mine the time-evolved motion of a vortex core based purely on its geometry ata given point in time; no knowledge is needed about the velocity �eld. In other10



words, if one were to distort a vortex core into an initial con�guration, let go,and then watch the distortion propagate into time-evolved vortex motion, onecould describe the subsequent motion through an understanding of only the self-interaction of the vortex with its own �ow �eld.In analyzing the two branches of the dispersion relation, one discovers that thefast branch does not in fact follow the self-induced local velocity �eld, whereasthe slow branch does. Therefore, it has been common in the literature to onlytake interest in the slow branch [3]. It is also true that the fast branch motionhappens on much faster time scales than that of the slow branch, and therefore isnot of as much interest for the description of slow vortex-�ow interactions in ourpresent discussion [3,5].However, one cannot simply throw away the fast branch without understand-ing the e�ects of that action. In the Schwarz paper, Schwarz shows that one cane�ectively linearize the equations of motion for vortex self-interaction and timepropagation and get dynamics that are consistent with solving the exact equationsof motion. In throwing away the fast branch, one does, however, lose some infor-mation. In our own studies, we linearize the equations of motion and use Fourieranalysis to understand the e�ect of discarding the fast branch of the dispersionrelation. Ultimately, we learn that when one uses only the slow branch, one can-not completely specify the position and velocity of the vortex core simultaneously.The local induction approximation is an entirely deterministic method dependingsolely on the vortex geometry, and when used, one cannot control the velocity�eld of the vortex. Therefore, we only specify the geometry of the vortex in oursimulations.In order to check that linearized Fourier analysis is an adequate means ofdescribing Kelvin wave propagation on a vortex core, we performed simulationsinvolving the time evolution of geometrical distortions on the core. In Figure 1.4,snapshots in time of a representative simulation are presented. In this simulation,11



an initial Gaussian disturbance is set on an in�nite vortex core, and the motion ispropagated through time using linear Fourier analysis. If at any point in time oneimagines a right handed circulation, curls his/her right hand around the core inthe direction of that circulation, and then imagines his/her �ngers as the �ow ofthe vortex, one can see that this �ow, through self-interaction with the rest of thevortex core, can be used to predict the frame by frame progression of the vortex'sgeometry. The last frame of Figure 1.4 is simply provided to show that after longtimes, the disturbance has e�ectively propagated away from the initial distortionsite.

Figure 1.4 - Time propagation of Kelvin waves on a vortex core resulting froman initial Gaussian displacement. Propagation times are scaled to the corefrequency. Top left: t = 0. Top right: t = 5. Bottom Left: t = 10. BottomRight: t = 100.It is important to note that this Fourier linearization of the wave motion resultsin behavior that is consistent with the Schwarz model, as that is the seminal paperfor understanding such vortex motion. In performing these simulations, we learnthat we have an understanding of this slow branch of vortex motion. However, itmust be remembered that we can still only specify the position of the vortex; thevelocity �eld cannot be independently controlled. Another important questionto ask, however, is how will our linearized model, which only considers the slowbranch, respond to an arbitrary boundary condition in time?12



Since we are ultimately concerned with the dragging of the vortex tip acrossthe substrate, which will produce wave agitation on the core, we proceeded byinvoking multiple boundary conditions in time for the vortex tip and trying tocontrol one, and then two dimensions of the vortex tip motion, again using linearFourier analysis. What we learned from these simulations is that one may con-trol only one dimension of motion at a time. The other dimension of motion isrequired to be free in order for the vortex to deal with the repercussions of themotion being controlled in a single dimension; if the x-component of the vortextip is controlled, then the y-component must be free in order to deal with the x-component manipulation, lest no solution exist at all. We performed simulationsfor sawtooth, Gaussian, triangle, and square waves in one dimension of motionusing linearized Fourier analysis on the slow branch of the dispersion relation,and observed behavior that is consistent with what we expect from the Schwarzmodel. This exercise was useful because it demonstrated that a time-dependentdisturbance at the vortex tip is indeed capable of propagating Kelvin waves upthe core that we may understand using the local induction approximation and lin-ear Fourier analysis. If one needs to know the exact behavior of the uncontrolleddimension of motion, it can be analytically solved for, resulting in Equation 1.7provided below (See Appendix A for derivation):Given some x(t), the resulting y(t) is given by:
y(t) = lim

λ→0

1
π

´∞
−∞ x(t− s) s

s2+λ2ds (1.7)Lastly, since we will eventually be looking to these Kelvin waves as a meansof understanding energy dissipation in our system, it is important to understandjust how much energy is associated with a vortex that has been distorted fromequilibrium. This result has already been formulated in papers addressing Kelvinwaves in bulk 4He. Given a Kelvin wave disturbance of wave number k and13



amplitude η, the resulting total linear energy density on the core is given by [9]
Ek

L
= ρκ2

4π
k2η2

(

ln
(

1
ka

)

+ c1
)

, (1.8)where c1 ∼ 1.1.6 Kelvin Wave Heating ModelAs mentioned previously, Anand Swaminathan conducted many studies withthe goal of trying to understand the mechanisms behind these anomalous freedecays. By testing various models and solving for their corresponding theoreticalfree decay curves, he arrived at the conclusion that none of the models couldaccurately �t the anomalous free decay data, and that another �tting parameterwould be needed; there was a lack of ability in �tting the curve of the bump inthe �bulge-like� behavior while simultaneously meeting the kink point of the data.From this it was concluded that connecting the drag force to the critical velocityat which the vortex is depinned is too simple a model to describe the underlyingphysical processes in the system.Ultimately, Anand Swaminathan's primary conclusion was that in order to ac-curately �t the data, there needed to be two critical velocities involved in thetheory. His idea was the following: when the third sound �ow reaches a criticalvelocity, vc−cold, the Magnus force depins the vortex from a defect in the substrate.The vortex then proceeds to drag along the substrate, dissipating energy. How-ever, this dragging along the substrate is not just a simple static drag dissipatinga linearly proportional amount of energy. This dragging is in fact a dynamicprocess, and the very dragging along the subtrate generates wave disturbances(Kelvin waves) on the vortex core that propagate away from the substrate. Thisdisturbance then travels up the vortex core, re�ects at the surface of the thin �lm,and propagates back down the core. This re�ected wave results in an agitation of14



the vortex, or heating, that makes it more di�cult for the vortex to repin to thesubstrate. When the third sound �ow oscillates back down below the depinningcritical velocity, it in fact does not repin until a critical velocity lower than theoriginal depinning one, vc−hot < vc−cold, due to this agitation and heating. Even-tually, it repins to the substrate at this lower critical velocity, where the vortexagitation created by the dragging dissipates fully in the time between pinning andthe beginning of the next cycle of third sound �ow, and the process repeats itself.Time scales can be seen to be to be adequate for such relaxation in between cyclesby simply considering the group velocity of the slow branch associated with thelowest quarter-wave mode of motion (.1 m/s for a �lm height of nanometers), andcomparing it to the period of third sound oscillations, which is on the order ofmilliseconds.Motivated by experimental [6] and theoretical [10] results in the literature,Anand Swaminathan proposed this �Kelvin Wave Heating Model� as a possibleexplanation for the need for two separate critical velocities. It is the developmentof a quantitative model of vortex �heating� that can explain the anomalous freedecays that we concern ourselves with throughout this thesis.
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Ch.2 Vortex Heating and Depinning
2.1 Kelvin Wave AgitationIn Section 1.6, the concept behind the KelvinWave Heating Model was detailed.In this section, attempts are made to quantitatively describe vortex agitation thatis induced by dynamic interaction with the substrate in order to test whether thisagitation could result in a plausible reduction of the cold critical velocity, vc−cold,to some lower critical velocity, vc−hot. We proceed by considering the re�ectioncoe�cient that the change in geometry from vortex core to open surface wouldcreate, and use the calculated re�ected Kelvin wave amplitude to determine whatmagnitudes of e�ective temperatures could be generated on the core by imple-menting the Planck distribution. Additionally, a model is developed relating theslope change of the vortex core at the defect boundary, resulting from a re�ectedKelvin wave, to a reduction in the critical velocity.Prior to the development of these models, Figure 2.1 is presented as a visualreminder of the qualitative ideas that will be put together in this chapter:
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Figure 2.1 - Quantized vortex on a substrate.In Figure 2.1, one can imagine a quantized vortex dragging along a substrate,generating Kelvin wave disturbances that propagate up the core and out onto thesurface of the thin �lm (the wave modes on the thin-�lm surface are known asripplons [3]), with the change in geometry of the vortex core causing a re�ectionof a portion these disturbances back down the core. It should be noted that anactual quantized vortex does not have the precisely de�ned shape that is depictedin Figure 2.1. Vortex geometries are determined using classical models, and donot take into account the uncertainty principle. One should therefore imagine thevortex in Figure 2.1 as a quantum fuzz taking that approximate classical shape.2.2 The Re�ection Coe�cientIn order to develop the models and ideas mentioned in Section 2.1, we musthave some concept about the amount of agitation re�ected back down the corecompared to the amount propagated outwards onto the surface as ripplons. Tosolve for this re�ection coe�cient precisely, one must solve the exact hydrodynamicproblem which, at present, has eluded us (see Appendix B for more discussion).In an attempt to approximate the re�ection coe�cient a vortex might exhibit, wedecide to neglect the hydrodynamic details and solve for the re�ection coe�cient17



associated with only the change in geometry of the vortex core's surface. Theanalytical solution to the wave motion on the surface of the thin �lm is known,and we use 4th-order Runge Kutta numerical integration to integrate down thecore and back to the site of the incident wave. In our calcuation we assume a �atsurface and cylindrical core with a �xed local gravity g. From the solution of thewave motion on the surface, and at the site of the propagation of the disturbance,we deduce re�ection and transmission coe�cients associated with the change ingeometry of the vortex surface. The equations of motion derived, integrationstrategy, geometrical re�ection coe�cient deduction, and general conversation re-garding the re�ection coe�cient can be found in Appendix B.As one would imagine, the geometrical re�ection coe�cient is going to be pri-marily dependent on the exact form of the vortex geometry that we choose toperform our calculations on. Intuitively, if the transition from core to surfaceis very rapid, one could take this to the extreme limit of a traveling wave inci-dent against a classical wall, and would expect a very large re�ection coe�cient.Constrastingly, if the geometry of the vortex is such that the expansion occursgradually from very near to the pinning site, then the change in geometry is muchless sudden, and one would predict a negligible re�ection coe�cient.Fortunately, the issue of vortex geometry is a topic that has already beendealt with in the history of the Quantum Fluids Laboratory. In 1992, laboratorymember Oliver Ryan derived, in his senior thesis [11], the energy and geometry ofa super�uid �lm vortex. This derivation included the e�ects of kinetic energy dueto the rotating �uid, potential energy due to Van Der Waals interactions with thesubstrate, and surface energy terms. The resulting vortex (Figure 2.2) consistsof a very rapid change in geometry, which, intuitively, we expect to result in asigni�cant geometrical re�ection coe�cient.
18



Figure 2.2 - Thin-�lm vortex geometry as calculated by Oliver Ryan. Note: scaleis in nanometers.When the procedure described in Appendix B is performed using Oliver Ryan'sgeometry, one calculates a reasonably large re�ection coe�cient of R = 53% forthe lowest frequency, quarter-wave, mode of the system (See Figure 2.6). This isa signi�cant re�ection coe�cient, implying that a large amount of the propagatedenergy will be re�ected back down the core and result in core heating. However,one cannot take this re�ection coe�cient too seriously, as it completely ignoresthe hydrodynamic details of the system. Yet another failure of the model is thatit assumes a constant local gravity on the core length, which clearly cannot betrue. Work was done to try to incorporate a position dependent local gravity intothe simulation, but was ultimately met with failure.Since we cannot solve the exact hydrodynamic problem, we are unable to de-termine the exact re�ection coe�cient, and cannot make any strong conclusionsregarding the precise amount of agitation retained on the core. However, therather rapid change in the geometry calculated in Oliver Ryan's thesis suggeststhat the re�ection coe�cient should indeed be non-negligible, due to geometrical19



considerations alone. If a solution to the mathematical problem of the re�ec-tion coe�cient could be found, it would be a great step in speaking quantitativelyabout the retained agitation in the system. However, much important informationcan still be gleaned by using an arbitrary re�ection coe�cient, R, as a parameter,and continuing with the development of the Kelvin Wave Heating Model that wasproposed. This is precisely what will be done in the following sections.2.3 E�ective Planck TemperaturePrevious work has been done in the Quantum Fluids Laboratory studying thetemperature dependence of dissipation in third sound free decays [12]. Studieswere performed where the theory of third sound dissipation involved an Arhennius-type barrier to the thermally activated depinning of quantized vortices on the sub-strate. In these studies, previous researchers were able to correlate the likelihoodof a vortex depinning to the strength of the background �ow, as well as an e�ectivetemperature of the vortex away from thermal equilibrium, which was built into aBoltzmann factor. These studies concluded that, by implementing this model, ane�ective vortex temperature of .95 K was associated with a vortex's depinning.In the Kelvin Wave Heating Model, Kelvin waves are propagated up the coredue to the interaction of the vortex with the substrate. One could conceivablylink the amplitudes of these generated Kelvin waves to a thermally induced root-mean-squared deviation from the core equilibrium by comparison to the Planckdistribution, resulting in an e�ective temperature of the vortex away from equi-librium. In the rest of this section, we develop a model for vortex tip interactionwith the substrate, determine the amplitudes of Kelvin waves generated on thevortex core resulting from this model, and calculate the e�ective Planck distri-bution temperature associated with these Kelvin wave amplitudes with the hopeof generating temperatures on the order of 1 K that have been found in previousstudies. 20



We begin with a very simple model for the motion of the vortex tip in orderto provide a general idea of what kinds of magnitudes of disturbances are beingpropagated up the core by interaction with the substrate. Our model is thefollowing: Assume a vortex is pinned to a defect site. The third sound �ow thenincreases to the point that the Magnus force depins the vortex core at a yet tobe determined cold critical velocity. The vortex tip then proceeds to move acrossthe substrate at the speed of the background �ow, vs, where after a time, τ ,the third sound �ow decreases below the cold critical velocity, and the vortexabruptly repins to the next defect on the substrate, a distance λ away from theprevious pinning site. If the reader is concerned that this model does not explicitlyincorporate a vc−hot, this issue will be addressed in Section 2.4. See Figure 2.3below for a graphical representation of this model.

Figure 2.3 - Velocity versus time plot of the motion of the vortex tip.We describe this model mathematically by Equation 2.121
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) (2.2)We proceed by Fourier analyzing the vortex tip motion and determining theFourier coe�cients associated with its designated velocity conditions. Performinga Fourier decomposition of Equation 2.1 results in coe�cients of
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) (2.5)Combining Equations 2.3 & 2.5, and rewriting the maximum amplitude of thenth Fourier mode results in the expression22



ηn = λ
2vvn2π2 vssin(

vvnπτ
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) (2.6)Equation 2.6 allows one to calculate an amplitude of wave motion, ηn, prop-agated up the core associated with our model for vortex motion depending onthe critical velocity, vc, vortex velocity, vv, and distance between pinning sites, λ.At present, our model generates wave disturbances of a particular amplitude, ηn,that will propagate up the core from the resonator surface. Based on our previousdiscussion, and the literature [10], we have reason to believe that these distur-bances will be Kelvin waves and will obey the dispersion relation of Equation 1.6.Additionally, it is useful to note that associated with this Fourier amplitude ofwave motion pumped up the core, ηn, there is a Fourier frequency (or Kelvin wavefrequency), ωpumped, given by:
ωpumped =

2vvnπ
λ

(2.7)It should quickly be mentioned that in our system it is desirable to have ameans of coupling the Kelvin waves on the vortex core with the ripplons on thesurface of the thin-�lm. Therefore, we have rederived Equations 1.6 and 1.81 toinclude a surface tension term γ , which for super�uid 4He is 3.54× 10−4N
m
, thatallows us to more coherently couple the wave motion on the core with the wavemotion on the surface of the thin �lm:
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where Γ = (2π)2 γa
ρκ2 .Using the dispersion relation for the slow branch of a Kelvin wave (Equation2.8), ωpumped can be converted into a Kelvin wavenumber kpumped. We can thenuse Equation 2.9 to calculate the energy associated with a given Kelvin wavedisturbance, η, and wavenumber, k. This provides us with a value for the amountof energy pumped up the core, Epumped , by a Kelvin wave associated with adisturbance propagating upward from the substrate due to our vortex tip motionmodel.Next, we invoke our re�ection coe�cient parameter and state that some fractionof the energy pumped up the core, R, is going to be re�ected back from the changein geometry of the vortex core surface:

EReflected = R× Epumped (2.10)and use EReflected and Equation 2.9 (under the assumption that the wavenumberdoes not change upon re�ection) to reversely calculate a re�ected amplitude ofthe Kelvin wave, ηReflected.We have now determined the re�ected wave amplitude associated with ourvelocity model and re�ection coe�cient. We wish to turn this into a thermal rmsamplitude deviation associated with some e�ective temperature of the vortex core,
T . We use the standard form of the Planck Distribution, nq [13], and de�ne therms amplitude �uctuation as:

< η2 >q= η2qnq=
η2q

e

~ωq
kBT −1

(2.11)where η2q can be found by rearranging Equation 2.9, Eq = ~ωq, and kB isBoltzmann's constant (Note: the notation of wavenumber has changed from k → qto avoid confusion with Kelvin and Boltzmann notation).24



Using the scaling τk = 2πa2kBT/~κ, x = qa, and letting L = h0, where we saythe vortex extends the height of the thin-�lm, h0, Equation 2.11 can be rewrittenusing the integral approximation:
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(2.12)One can then �nd the roots of Equation 2.12 to determine the value of the scalede�ective temperatute, τk, associated with ηReflected. Using the parameters of ourmodel (distance between pinning sites, critical velocity, and re�ection coe�cient),we can estimate the e�ective Planck distribution temperatures generated by ourvortex moving from one pinning site to another. A sampling of results are providedin Figure 2.4 and Figure 2.5.We �nd that the re�ection coe�cient results in having an e�ect on the gener-ated e�ective temperature approximately linearly associated with its magnitude(a reduction of the re�ection coe�cient by 20% results in a reduction of the ef-fective temperature, T , by approximately 20%). One also discovers an increase inthe e�ective temperature, T , associated with an increase in the distance betweendefect sites, λ. This result is due to the fact that the farther the vortex travelsbetween pinning sites, the more weight will be give to the lowest mode of theFourier decomposition, and consequently larger amplitudes of Kelvin waves willresult from larger distances between defect sites.
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Figure 2.4 - E�ective Temperature vs Length Scale (λ) plots with a re�ectioncoe�cient of 50%.
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Figure 2.5 - E�ective Temperature vs Critical Velocity plots with a re�ectioncoe�cient of 50%. Note: the discontinuities and decreasing values of thetemperature in the Fourier modes are merely a result of resonance in the Fourieranalysis, and do not represent physical phenomena.While not quantitatively rigorous, when one selects values of the model's pa-rameters derived from physical expectations (vc = .01− .1m
s
, λ = 1 nm - 100 nm),this model is capable of generating Boltzmann temperatures in line with whatwas witnessed in previous Quantum Fluids Laboratory experiments. However,one must understand that the critical velocity is really the only parameter thatcan be narrowed down into any con�dent range, as determined by previous Quan-tum Fluids Laboratory experiments. The length scale parameter is undoubtedlyhighly variable, and unknown without experimental analysis from a technique likescanning electron microscopy. Similarly, we do not know enough about the valueof the re�ection coe�cient, due to the neglect of the hydrodynamic details, to27



place it in any reasonable range. Regardless, by approximating many of thesephysical parameters, we can see that perhaps the Kelvin Wave Heating Model iscapable of providing some insight into the mechanism of these previously studiedthermal barriers to depinning. While this model is not as rigorous as one wouldlike, it does suggest that dynamic vortex interaction with the substrate could bean important phenomenon in these experimental systems. Deriving a more rigor-ous model for vortex interaction with the substrate (perhaps using the model thatwill be developed in Chapter 4), and applying it in order to get a more de�nitivedetermination of the e�ective Planck distribution temperature that could be com-pared with .95 K, could prove to be an interesting project for a future QuantumFluids Laboratory student.
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2.4 Reduction of the Critical VelocityBefore moving on from this model of dynamic vortex interaction with the sub-strate to something more sophisticated, it will be informative to see how one canuse this model to induce a reduction in the critical velocity, as well as to generatethe actual vortex dynamics resulting from Kelvin wave heating. From the Schwarzpaper [5], it is known that every quantized vortex must obey a boundary conditionsuch that the vortex intersects a surface orthogonally. If one considers a simplespherical pinning defect on the substrate (Figure 2.6), then one can see that ifthere is Kelvin wave agitation on the vortex core, there is only so much leewaythat a vortex has to deal with a geometrical distortion before it is necessarilyrequired by its boundary condition to detach from the defect site.

Figure 2.6 - A vortex pinned to a defect site trying to meet its boundarycondition. Note: not drawn to scale.If one narrows one's view down to the defect site and uses Newton's SecondLaw to balance the Magnus force (pinning force at the critical velocity) on the29



vortex with the parallel component of the vortex line tension, one can determinethe slope of a vortex (with no wave agitation) locally around the defect site to be
s0 =

4πhvc−cold

κLog[ b
a
]

(2.13)where a is the radius of the vortex core, and b is the radial extent of a vortex'scirculation. Observing the vortex very locally like this is a crude model, but itprovides us with a fast and simple means of estimating what we are seeking. Amore sophisticated model will be developed in Chapter 3.Now that we have a value for the unperturbed slope, we take our ηReflecteddisturbance, and associate with its amplitude and wavenumber a change in theslope of the vortex:
4s = qpumpedηReflected (2.14)We assume that given some Kelvin wave agitation, the vortex will be less likelyto pin, i.e. the critical velocity will be decreased. Therefore, as a rough model,we associate with our disturbance, 4s, a simple linear reduction in the criticalvelocity given by:
vc−hot = (1− 4s

s0
)vc−cold (2.15)Equation 2.15 says that given some disturbance, our original critical velocitywill be reduced by an amount linearly proportional to the disturbance on thevortex core related to how �di�cult� it is now for the vortex core to meet its or-thogonal boundary condition with the substrate. s0 is the value of the unperturbedequilibrium slope of the vortex near the pinning site, and is thus implemented asa characteristic value for slope magnitudes in this system that serves as a refer-ence point for the slope change in Equation 2.15. There is no physical basis for30



choosing a linear reduction; it is merely the simplest possible form that will resultin a reduced critical velocity.2.5 Self-Consistent DynamicsSince we now have a means of expressing the reduction of the critical velocity,it will be interesting to calculate the resulting modi�ed vortex dynamics. We areparticularly interested in the relationships among vs, vv, and vc, and require themagnitude of the velocity of our vortex given by Equation 1.5. Therefore, we usethe Pythagorean theorem to modify Equation 1.5 to deal with only the magnitudeof the vortex velocity:
| vv |=

√

v2s − v2c (2.16)Using Equations 2.13, 2.14, & 2.15, and solving self-consistently with Equation2.16, one cannot derive an analytic expression relating vs, vv, and vc. Therefore,we approach the problem in a numerical fashion to determine these relations. Weassume an oscillatory third sound �ow of the background super�uid, vs. We thenguess a value of the vortex velocity, vv, and calculate the critical velocity usingEquation 2.16, calling that value vc−initial. Then we use the model described inSection 2.3 to determine an ηReflected (using our guess for vv), and utilize Equations2.14 & 2.15 to reduce the critical velocity by some change in the slope due tothe Kelvin wave disturbance, ηReflected, resulting in a calculated critical velocity,
vc−final. Finally, we compare our initial and �nal critical velocities. If they di�erby more than a given tolerance, δconvergence, then we guess a di�erent starting vvand repeat the procedure until our convergence condition is met:

| vc−initial − vc−final |< δconvergence (2.17)31



This procedure must be performed for all values of the super�uid �ow, vs, inorder to develop a total picture of the vortex dynamics at all the values of thesuper�uid velocity in a third sound oscillation. The results of these simulationsare provided in Figures 2.7 & 2.8.

Figure 2.7 - Plot of vortex velocity (vv) vs third sound �ow velocity (vs) fordi�erent values of the re�ection coe�cient.
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Figure 2.8 - Plot of vortex velocity (vv) vs third sound �ow velocity (vs) fordi�erent values of the length scale λ.Figure 2.7 and 2.8 clearly show a reduction in the critical velocity when com-pared to the static drag dynamics (R = 0% - the blue curve in Figure 2.7). In thecase of a re�ection coe�cient of 0%, all of the agitation is transmitted out of thevortex core, no heating occurs, and the solution is simply that which is expectedfrom Equation 2.16. If the re�ection coe�cient, or length scale, is increased invalue, we see that the steady state solutions to the vortex motion result in arepinning at a much lower critical velocity than when it was depinned, i.e. thelowest value of vs in Figures 2.7 & 2.8 at which a solutions still exists, for a givencurve. It is important to note again that these are the steady state solutions tothe vortex motion (which is the condition of Equations 1.5 & 2.16). In Figures2.7 and 2.8, the simulations run with nonzero re�ection coe�cients have no solu-tion for some values of the super�uid �ow velocity. Clearly, a vortex cannot have33



a nonzero velocity and suddenly repin to the bump and be motionless, with nointermediate deceleration. Since these solutions are derived in the steady state, aphysical interpretation of this region where no solution exists would be that thisregion is a point of hysteresis where the vortex is captured by the defect site andexhibits hysteretic motion as it settles down into a pinned state. This processis depicted in Figure 2.9, which is a very important �gure for understanding thevortex dynamics being discussed.

Figure 2.9 - Modi�ed vortex dynamics. The vortex depins at vc−cold, transfers topath 2, travels up path 2 to the peak of the third sound oscillation, then travelsback down path 2, where it undergoes hysteretic motion when captured by thedefect site at vc−hot, and eventually repins. Paths 1 and 2 represent the staticand dynamic drag paths, respectively.
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2.6 SummaryIn this chapter we have developed a rudimentary model for Kelvin wave heat-ing based on a vortex moving from one pinning site to another along the surfaceof a substrate. Ultimately, this model fails at being a quantitative guide to Kelvinwave heating due to the fact that we cannot pin down the re�ection coe�cientof the vortex, or the length scale between defect sites, with any reliable accuracy.However, we do learn that given values of the re�ection coe�cient and the lengthscale that one might reasonably guess in our experimental system, meaningful ef-fective temperatures can be generated that corroborate results found in previousstudies. Additionally, from our slope argument, we learn that signi�cant reduc-tions in the critical velocity can occur due to Kelvin wave heating and, while notrigorous, this model serves as strong motivation for developing a more completetheory. Lastly, it is to be noted that thinking in terms of the frequency propertiesof the substrate has been instructive in this chapter and is an important techniquethat will be adopted as a strategy throughout the remaining chapters.
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Ch.3 Substrate Analysis
3.1 MotivationMost information, to date, regarding the critical velocity has been derivedfrom experimental results. Theoretically, it has been generally believed that adefect site (geometrical distortion) on a perfectly �at substrate provides an energyminimum which the vortex falls into, resulting in the vortex pinning to the defect.It would be useful to be able to relate the pinning force that acts on a vortexto the geometrical properties of an arbitrary surface. This would allow one torelate experimental critical velocities to the surface properties of the substrate,and would give one some idea of the characteristics of the resonator substrate thatwe are unable to measure directly. Likewise, if the exact geometry of a resonatorsubstrate could be speci�ed, then one could exactly calculate the pinning force atall points on the resonator surface.When a vortex moves across an arbitrary surface in one dimension, the vortexwill exert a suctioning force on the surface it is moving across (think of a tornadotraveling over a corn�eld, ripping corn out of the ground around its core as itmoves along its path). In a macroscopic, classical vortex scenario, this suction iscaused by Bernoulli pressure di�erences that result from the velocity �eld of thevortex interacting with the surrounding surface geometry. We choose to modelour quantized vortex classically to determine the suction force on the substrateresulting from this Bernoulli pressure �eld. We then claim that a vortex, havingzero mass, can have no net forces acting on it. Therefore, the component of thesuction force parallel to the substrate must be equal to the pinning force whenthe vortex is immobilized on a defect site, and we should be able to correlate the36



geometrical properties of our surface to the pinning force (critical velocity) thata vortex experiences on the substrate.3.2 Surface GeometryIn getting started, it is helpful to understand the normal vector geometry ofan arbitrary surface, i.e. to come up with relations for the normal vectors of anarbitrary two-dimensional surface, η(x, y) (Figure 3.1).

Figure 3.1 - A two-dimensional slice of the normal vectors for an arbitrarythree-dimensional surface η(x, y).From Figure 3.1 we can deduce a relationship among the normal vectors:
n̂z

n̂x
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n̂z
= −∂η

∂x
(3.1)We additionally require that the �normal� vectors be normalized to unity:
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Combining Equations 3.1 & 3.2, along with the Pythagorean theorem, one candeduce Equation 3.3.
n̂x =

− ∂η
∂x

√

1+( ∂η
∂x)

2 (3.3)Similarly, in a three-dimensional analysis, one can follow this methodology toderive the more general Equation 3.4, where ı̂ and ĵ refer to two orthogonal unitsvectors that are parallel to the substrate surface:
înx + ĵny = −

−→∇η(x,y)
√

1+|−→∇η(x,y)|2
(3.4)In addition to the normal vector geometry, we will need to understand therelationship between the area of an arbitrary surface, dA, compared with theperpendicular area actually exposed to the velocity �eld of the vortex core, dA⊥.The relationships between these two areas is illustrated in Figure 3.2

Figure 3.2 - Di�erential area analysis of an arbitrary surface.38



3.3 Bernoulli Pressure IntegrationWe seek to �nd, given an arbitrary surface, the total Bernoulli force exertedparallel to the substrate at −→r due to a straight vortex core at −→rv . We assumea straight vortex core, as it greatly simpli�es the mathematics involved. Dealingwith the velocity �eld generated by a distorted vortex core would be a very mathe-matically demanding scenario, and we just seek a rough estimation of the pinningforce. In order to do this, we must integrate d−→Fx (change of notation d
−→
Fx→ d

−→
F‖,the force parallel to the substrate), in order to get the total force exerted parallelto the substrate, where
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(−→r −−→rv)2dA⊥n̂ · î (3.5)Integrating Equation 3.5 we arrive at:
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(−→x−−→xv)2+(−→y −−→yv)2dxdy (3.6)We attack this integration via a Fourier convolution of the terms −→∇η(x, y)and 1

(−→x−−→xv)2+(−→y −−→yv)2 , and we begin by de�ning a forward and backward Fouriertransformation of the substrate, η(x, y):
η̃(q) = 1

2π
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2π

˜∞
−∞ η̃(−→q )ei−→q ·−→r d2q (3.7)It is useful at this point to mention that in performing this analysis the solutionwill ultimately be intimately linked to the frequency properties of the Fouriertransformation of our arbitrary substrate. Thinking in terms of the frequencyand wavenumber components of our system was not only useful in Chapter 2, aswell as this chapter, but will also be key in the more sophisticated treatment of the39



critical velocity reduction model that will occur in Chapter 4. We continue withour analysis by taking the gradient of the backward transformation (Equation3.7):
−→∇η(x, y) = i

2π

˜∞
−∞
−→q η̃(q)ei−→q ·−→r d2q (3.8)We can clean up Equation 3.8 for conceptual purposes by de�ning:

−→̃
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2π
−→q η̃(−→q ) (3.9)and rewriting Equation 3.9 as:
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G (−→q )ei−→q ·−→r d2q (3.10)Regarding the 1

r
inverse �ow �eld term, one can see that at some point in thisanalysis we are going to run into some troublesome behavior as −→r → −→rv . This isexpected, as in Chapter 1 we discussed how a vortex is de�ned as possessing a 1

r�ow �eld up until the core radius, where quantitatively di�erent behavior occursas r becomes less than a0 . This is the same issue that we run into at present.Since we are trying to de�ne a Fourier transform of the inverse �ow �eld term,it is necessary that we integrate through the singularity somehow without causingany unwieldy in�nities. There are a couple of conceivable ways of doing this,but we choose the path that allows for the cleanest analytical solution to thisintegral. We introduce a �damping� term, γd, in the denominator of the inverse�ow �eld part of the convolution, which is approximately equal to the core radius,
a0 (Equation 3.11). 40



Figure 3.3 - The utility of the damping term in controlling the singularity of thevelocity �eld.By introducing this damping term, we can write the Fourier transform of theinverse �ow �eld part of the convolution in polar coordinates, and simplify it downto the expression
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′γd) , (3.11)where K0 is a modi�ed Bessel function of order zero. For future ease, let us alsode�ne the Fourier transform of the pressure �eld:
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Now, one can write out the full convolution expression:
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After performing the proper algebra and integrations, Equation 3.14 can bereduced into the form:
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−→q η̃(−→q )p̃(−−→q )d2q (3.15)In evaluating Equation 3.15, we assume a simple one dimensional uniformtranslation of the vortex, −→rv = îvvt, and want to look at the frequency spectrumof the force parallel to the substrate:
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−→qx−→vvteiωtdtd2q(3.16)Equation 3.16 allows one to calculate the force exerted on a vortex parallel tothe substrate, or, in equivalent language, the pinning force associated with a vortexmoving in one dimension over an arbitrary surface. We seek an intuitive physicalunderstanding of the relationship between the parameters presented. In order toput this equation into the simplest possible form, we choose a one-dimensionalsurface with only one wavenumber present, i.e. a complex exponential function:

η(x) = η0e
iq0x (3.17)Choosing this form of the substrate surface results in an rms force of:42



|F0| = 1
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q0η0K0(q0γd) (3.18)A common result in thin-�lm super�uid studies is the relation between velocityand force of

F = vρκh0 (3.19)which allows us to write our �nal result relating the critical velocity to the hori-zontal pinning force between a super�uid vortex and a one-dimensional substratepossessing a single wavenumber, q0, with bumps of a height η0:
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q0η0K0(q0γd) (3.20)This relation is signi�cant because we now have an analytical means of relatingthe arbitrary properties of a substrate to the cold critical velocity of a vortex viathe interaction of the Bernoulli pressure �eld of the vortex with the local resonatorsurface geometry. Figure 3.4 provides a plot of Equation 3.20 using parametersthat we might expect to be associated with a resonator substrate. Note that η0should be noticeably smaller than the �lm height h0 in order to maintain a �atadsorbed thin-�lm surface.
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Figure 3.4 - Critical Velocity vs Fourier Wavenumber. A plot of Equation 3.20for η0 = 3 Å, γ = 1.3× 10−10Å.Figure 3.4 demonstrates that by plugging parameters that we believe to bephysically relevant into Equation 3.20, one can generate critical velocities thatare on the order of those that have been found experimentally in past QuantumFluids Laboratory experiments (vc ∼ .01m
s
) [2]. It is interesting to note that thereis a maximum in the critical velocity distribution which occurs at qmax = 1

2γd
,corresponding to the situation where the vortex core exactly encloses one halfcycle of the oscillation of the substrate surface (λ = 2γd). When the core radiusis much larger than the Fourier wavelength of the substrate surface, the vortex�ow �eld sees an averaged surface that appears reasonably �at. Consequently,there are no sharp changes in geometry as seen from the vortex �ow �eld, andthe suction is minimal. As the Fourier wavelength shrinks to be of a size scalecomparable to the core, the geometry of the surface has a much larger e�ect on thesuction force generated. From Figure 3.2, we understand that the e�ective areaof the surface that the core sees goes like 1

cos[θ]
. This implies that the more rapid44



the vertical change in geometry, the more area the vortex �ow �eld �sees�, and themore suction can be created as the amount of area being integrated over at largevalues of the vortex �ow �eld increases. At qmax = 1
2γd

, the steepeness of the 1
cos[θ]is maximized, and the suction force (critical velocity) is at a maximum. Finally,as the vortex core gets small compared to the Fourier wavelength, the substratesurface appears very �at locally around the core, and there are no extreme changesin geometry, which results in a reduced suction force.Clearly the insight that this result provides about the details of the systemrelies on the premise that there is only one wavenumber present in the Fourierspectrum of the substrate. This is not true for any typical surface. An interestingpoint to note for future research, however, is the topic of monolayer self-assembly.Many recent advances in the �eld of supramolecular chemistry and self-assemblyhave enabled researchers to be able to pattern uniform monolayer surfaces withspeci�cally tailored components. This point is particularly pertinent given thefact that our resonator substrate is gold-plated, and that there is a wealth ofmetal-thiol self-assembly chemistry available in the literature [14]. If one couldcontrol the exact properties of the substrate through self-assembly, and make thesurface completely uniform, then one could perform very interesting studies onthe pinning properties of a perfectly uniform surface, where all of the geometric,electronic, and magnetic properties of the surface would be completely known.This would eliminate many of the uncertainties that have been faced in the pastin these types of studies. It is here that the formalism developed in this chaptercould possibly �nd its greatest utility.3.4 SummaryUltimately, the derivation in this chapter was performed with the intent ofdeveloping a theoretical means of relating the geometrical properties of a substratesurface to the pinning force, or critical velocity, of a vortex on a defect site. While45



it is impossible to analytically solve Equation 3.16 for a real substrate surface(although a statistical approach to the wavenumbers present in the frequencyspectrum of the substrate could be implemented), it is instructive to use a simplecomplex exponential to qualitatively understand the e�ects of geometry on pinningstrength. In essence, we can conclude that the more rapid the change in surfacegeometry in the region near to the core, the stronger the pinning force will be.This corroborates the generally accepted notion mentioned at the beginning of thischapter that geometrical defects provide energy minima that vortices are inclinedto pin to. Theoretically, one could use Equation 3.16, and experimental results, todevelop some knowledge of the frequency properties of a given substrate surface.This formalism also possesses important possible uses for a substrate surface thatis geometrically uniform in a periodic sense, as in the situation of a self-assembledmonolayer. Again, it is to be noted that considering the problem at hand in termsof the frequency properties of the substrate continues to be a useful methodology.
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Ch.4 Vortex Dynamics and Results
4.1 Vortex Precession and RelaxationIn Chapter 2, we developed an elementary model for vortex heating and calcu-lated the resulting vortex dynamics. In this chapter, we use motivation from themodels of Chapter 2, as well as from the idea of thinking in terms of the frequencyproperties of the substrate from Chapter 3, to develop a more rigorous means ofmodeling vortex interaction with the resonator substrate.When a vortex tip drags across the substrate, Kelvin wave agitation is propa-gated up the core. The lowest wavenumber mode that can be propagated on thecore is the quarter-wave precession corresponding to the boundary condition thatthe vortex core intersects the thin-�lm surface orthogonally (Figure 2.6). Thiscorresponds to a quarter-wave Kelvin precession frequency of ω1/4 via Equation2.8. We imagine a disturbance with this precession frequency, and the vortexcontinuing to be dragged along the defect-ridden substrate. In an unperturbedscenario, the vortex would be likely to pin to an energetically favorable geometri-cal defect; however, in the perturbed case the vortex core possesses agitation andhas trouble doing so. Since the vortex tip is being dragged along the substrate,one can associate a frequency with the vortex dragging across the bumps on thesubstrate of ωinteraction. This ωinteraction is essentially a measure of how frequentlya vortex encounters a surface defect that propagates agitation up the core. If wemodel the surface very simply as a complex exponential as in Chapter 3, thenthere is only a single wavenumber needed to describe the substrate: q0. If thevortex is moving at a velocity vv, then we describe ωinteraction as:

ωinteraction = q0vv (4.1)47



Intuitively, whether or not the vortex is able to repin to a defect will be re-lated to how frequently the vortex is being perturbed, compared to how fast thatdisturbance can propagate away from the defect site and the vortex can settleinto an unagitated state again. If ωinteraction >> ω1/4, then the vortex will havetrouble pinning due to agitation extant on the core (vc−hot < vc−cold). On theother hand, if ω1/4 >> ωinteraction, then the vortex will easily repin to the sub-strate (vc−hot ≈ vc−cold), as it will be able to �shake o�� the agitation prior to theexcitation of the next Kelvin wave. All conversation about the �ease of repinning�is, in more de�nite words, a conversation about the critical velocity of the vortex.4.2 Steady-State Vortex DynamicsWe require a means of reducing the critical velocity of the vortex based onthe essential time scales of the system described in the previous section. Oneof the simplest and most intuitive quantitative ways to describe the behavior weseek with a mathematical equation is the following expression that is common indissipative systems:
vc−hot =

vc−cold

1+i
ωinteraction

ω
1/4

(4.2)In utilizing Equation 4.2, we describe the reduction of the cold critical velocityas a relaxation process involving the disturbance on the core induced by the inter-action of the vortex with the substrate. We use ω1/4 as a characteristic frequencyscale associated with the lowest quarter wave precession of a Kelvin wave in orderto provide an indication of the rate at which a disturbance propagates out of thecore and the vortex relaxes back into an unperturbed state. Describing ωinteractionfollows from Equation 4.1.We seek to combine our new quantitative expression relating the time scalesinvolved in the relaxation of the vortex to a reduction in the critical velocity. In48



other words, we need to �nd a self-consistent solution with our previous equationdescribing quantized vortex motion, Equation 2.16. When Equation 4.2 and Equa-tion 2.16 are solved simultaneously, one arrives at the scaled, analytic expressionfor the vortex velocity
vv

vc−cold
= 1√

2β

√

β2v2s − 1 +
√

1− 4β2 + 2β2v2s + β4v4s , (4.3)where β =
q0vc−cold

ω1/4
. This expression contains all of the information in our modelregarding the frequency properties of the substrate and the characteristic relax-ation time of the Kelvin waves on the vortex core. It should be noted that vs isscaled to the critical velocity (vs → vs

vc−cold
).Similarly, one can deduce the expression for the scaled critical velocity as well:

vc
vc−cold

=
√
2

√

β2v2s+1+
√

1−4β2+2β2v2s+β4v4s

(4.4)
The plots of these new expressions for the vortex velocity and the criticalvelocity appear in Figures 4.1 and 4.2, respectively.
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Figure 4.1 - Calculated scaled vortex velocity (Equation 4.3).

Figure 4.2 - Calculated scaled pinning force/critical velocity (Equation 4.4).What is very interesting to note here is the similarity of the vortex velocityplot in Figure 4.1 to the qualitative behavior of the plots in Figures 2.7 and 2.8,50



because it demonstrates that our two very di�erent ways of modeling this systemresult in similar vortex dynamics. One does not need to be restricted to thinkingpurely in terms of re�ected waves heating the core, or reductions in the slopeas in Chapter 2, although both are instructive. One simply needs to imaginesome type of agitation a�ecting the core that does not allow the vortex to pin aseasily. In other words, the idea that some manifestation of excess kinetic energyon the vortex core results in a reduced pinning is the essential theme in all of thesemodels, and in this chapter this concept takes the form of a time scale argument.Again, there is the issue of solutions not existing for all vs, which is a resultof our solution being in the steady state, as in Chapter 2. Any region where thevelocity of the vortex has no solution is a place where hysteresis will occur as thevortex is captured on a pinning site, as described previously in Section 2.4 andFigure 2.9.
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4.3 Dynamic Drag ModelAs mentioned previously, in 1991, Fred Ellis and Hai Luo published an article[15] that suggested that the critical velocity phenomena observed in free decayswere the result of the pinning and unpinning of vortices from the resonator sub-strate. This process, they thought, was analogous to a classical friction force andcould be modeled as such. We are ultimately interested in learning what the av-erage power dissipated by a single vortex moving across the resonator substratewill be, because it is our hypothesis that dynamic vortex drag dissipation is thecause of these anomalous free decays. We assume that the frictional (drag) forceacts opposite to the direction of the vortex motion, and that the average powerdissipated can be described by:
PAV = 1

T

´ T

0

−−→
fdrag·−→vvdt (4.5)where T is the period of the third sound oscilllation, and the force, −−→fdrag, is thepinning force that the vortex encounters as it drags across the substrate, describedby:

−−→
fdrag = ρκh0vcv̂v (4.6)The di�erence between our model and calculations done previously, particularlyin Anand Swaminathan's thesis, is that our modi�ed model does not assumethe critical velocity vc, to be constant. Instead, we can replace vc by Equation4.4, which describes how the critical velocity changes as a function of substrateproperties β, and the background third sound �ow, vs. Similarly, we describe vvusing our newly modi�ed Equation 4.3.Substituting in the corresponding expressions allows one to write Equation 4.5as: 52



PAV =
ρκh0v2c−cold√

2β2
1
T

´ T

0

√

2β2 − β2v2s − 1 +
√

1− 4β2 + 2β2v2s + β4v4sdt (4.7)We then choose to introduce the scalingA = η
ηc

= v
vc−cold

. This greatly simpli�esmatters since all amplitudes can now be scaled to the critical point (kink point)amplitude, which can be read very easily from experimental data. A third soundcycle oscillation can be approximated by a simple sine function:
vs(t) = A · sin(ωTSt) (4.8)The average power dissipated by a single third sound cycle can be consideredas consisting of two components. The �rst component of the drag dissipation canbe thought of as the power dissipated from the time when the vortex depins fromits cold critical velocity vc−cold to when the background super�uid �ow reachesits peak. The second component is the drag dissipation associated with the timeframe between the peak of the super�uid third sound cycle and the repinningof the vortex at the lower critical velocity, vc−hot. The physics in both of thesecycles is the same, and they are merely separated for the purpose of making thecalculation simpler. The total power dissipated over a single third sound cyclecan be determined by summing these components of the dissipation in the timeaverage of Equation 4.5. These components are illustrated in Figure 4.3.
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Figure 4.3 - Third Sound Flow Cycle. Super�uid �ow velocity is scaled to thecold critical velocity. Blue denotes the dragging of the vortex from its depinningat vc−cold (vs = 1 in the plot) to the peak. Red denotes the dragging of thevortex from the peak to vc−hot (vs < 1 in the plot).Using the scaling φ = ωTSt , one can write the full form of Equation 4.7 for the�rst component of the drag dissipation as
PAV =

ρκh0v
2

c−cold

π

´

π

2

sin−1[ 1

A
]

1√
2β2

√

2β2 − β2A2Sin2[φ]− 1 +
√

1− 4β2 + 2β2A2Sin2[φ] + β4A4Sin4[φ]dφ(4.9)and the second component similarly as
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PAV =

ρκh0v
2

c−cold

π

´

π

2

sin−1[
v
c−hot

A
]

1√
2β2

√

2β2 − β2A2sin2[φ]− 1 +
√

1− 4β2 + 2β2A2sin2[φ] + β4A4sin4[φ]dφ(4.10)Equation 4.10 is dependent upon knowing exactly at what vc−hot the vortex willrepin. Through some brief analysis, a closed form for determining the repinningcritical velocity, vc−hot , solely as a function of β, can be determined from thepreviously mentioned equations, thereby making the bounds on the numericalintegrals of 4.9 and 4.10 exact.Prior to proceeding, it is useful to understand the e�ect of the β term on thepower dissipated by a single vortex. This information can be found in Figure 4.4,where we plot Equation 4.9 for di�erent values of β. The total average powerdissipated will be a sum of the contributions from Equations 4.9 and 4.10.

Figure 4.4 - Power dissipated by a single vortex as a function of the scaled thirdsound amplitude.55



Figure 4.4 tells us that the β parameter, which describes the agitation presenton the core due to disruptive encounters with defects on the substrate, allows oneto control the amount of energy a vortex dissipates as the third sound �ow in-creases. A rather interesting point to note is that as one goes to higher amplitudeswhile at nonzero β, one does not recover the linear drag force type of behaviorfound in previous static drag models. This is undoubtedly due to the fact thatwhile the vortex can dissipate energy for a longer duration if β is nonzero, since itis unpinned and dragging for a longer period of time, the reduction in the criticalvelocity (pinning force) ultimately decreases the total amount of energy dissipatedin a third sound oscillation. While this might limit the utility of this model sinceincreasing β by too much decreases the amount of energy a vortex can dissipate,ultimately we are only discussing one vortex. There are most likely more thanjust one vortex in our experimental system, so by increasing the number densityof vortices in our model we can control the shape, and magnitude, of our powerdissipation curve. This will in turn allow one to tailor the form of the free decaycurve.Since PAV is simply the average power dissipated by one vortex over one cycleof third sound �ow, we de�ne a total power dissipated:
W (A) = n× PAV (4.11)where n is equal to the number density of vortices on the resonator substrate.This W (A) can be combined with the background exponential dissipation toproduce the total energy lost in the wave

dE(A)
dt

= −W (A)− ω0E(A)
2Q0

, (4.12)56



where ω0 and Q0 are associated with the drive frequency of the resonator and thebackground exponential dissipation in the system, respectively. Q0 is chosen by�tting an exponential decay curve to the section of the free decay after the criticalpoint.
E(A) is the energy in the wave under the plane wave approximation, which istwice the kinetic energy, given by

E(A) = 1
2
ρh0v

2
cA

2 (4.13)Substituting this energy into Equation 4.12, its �nal form reads
dA
dτ

= − I(A)
A
− γA (4.14)where we use the scaling τ = αt, α = nκ

π
, γ = ω0

2Q0

1
α
, and I(A) is a numericalintegral corresponding to the scaled power dissipation associated with the sumof the two components of the drag dissipation, Equations 4.9 and 4.10. Fromdimensional analysis of Equation 4.14, it becomes clear that α is some type ofrate constant and γ is some type of scaled decay constant.Equation 4.14 is a separable di�erential equation, so separating and integratingyields:

τ = −
´ A

1
A

I(A)+γA2dA (4.15)This equation can then be inverted to produce a decay amplitude A as a func-tion of τ , and this is the method used to generate our theoretical decay curves.57



In matching the experimental data to our model, we scale all of the experimen-tal data such that the critical point (kink point) in the data corresponds to τ = 0,with a critical amplitude of A = 1. We then scale our time axis by the value α as-sociated with one of the �tting parameters of our model, n. Ultimately, there arefour parameters that one can tune in order to get the best �t possible: β, n, tcrit,and Acrit, where tcrit and Acrit represent the critical time and amplitude chosen byhand from the experimental data set. As one can see from Figure 4.5, Acrit is aneasier parameter to place precisely than tcrit, as there is some ambiguity as to theexact point of the critical time. Therefore, we �x Acrit and use a three parametermodel, allowing tcrit to be �oated in the range just around the critical point thatallows for the best �t, since the exact time is hard to pin down. It should be notedthat we �t by �nding the smallest least-squares value by hand since there was notadequate time to devise a least-squares �tting routine, however the most preciseresults should involve an automated �tting routine. It should also be noted that
I(A) was �t to a linear combination of polynomials in order to allow for a closedform of the integrand that could be evaluated more quickly with computationalsoftware.As mentioned in Chapter 1, the model used in Anand's thesis could not ad-equately describe both the curvature of the decay curve and the position of thecritical point simultaneously. This is shown in greater detail in Figure 4.5, wherewe see the �ts resulting from the static frictional drag force (β = 0) in AnandSwaminathan's thesis.
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Figure 4.5 - Decay curve results from Anand Swaminathan's thesis [2]. There isan inability to simultaneously match the curvature of the decay amplitude andthe critical point position.The new results corresponding to the incorporation of the β parameter arepresented in Figure 4.6, where we �t a respresentative experimental free decaycurve.
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Figure 4.6 - Decay curve �t resulting from the dynamic drag model. Note aremarkably better ability to simultaneously match the curvature of the decaycurve and the position of the critical point.Clearly, this results in an improved �t to the experimental free decay data.In the analysis done in Anand Swaminathan's thesis there was ultimately onlya single parameter that could be tuned in these �ttings: the number density ofvortices on the substrate. Each vortex had a speci�c dissipation function thatcould not be altered. By incorporating this β term that involves the interactionof the vortex with the substrate, we now have a means of tuning the amount ofpower dissipated by each vortex. This results in a better �t of the experimentaldata.Fits for the range of experimental data sets that we have available have βranging between .5 and 5, and n ranging between 2 · 106 1
m2 and 5 · 107 1

m2 . Theexperimental apparatus used has a total surface area of 1 cm2, which correspondsto between 2 · 102 and 5 · 103 vortices present on our resonator surface in a given60



experiment. This is well below the theoretical limit for vortex density, whichcorresponds to dividing the resonator surface area by the vortex core area.An interesting phenomenon in �tting the data is that equally good �ts can befound for many values of β and n. This was at �rst unnerving, as it implied thatthere were not �tting values unique to the physical situation. However, after someanalysis we found that if one takes the ratio of β
n
for all of the values of β and nthat result in good �ts of a particular data set, that ratio will always be constant.This implies that there is some interaction per vortex that is characteristic of agiven experimental system, and thus β

n
is the parameter of physical importance.The important physics that happens occurs when one changes β from 0 to thelowest value that allows for an accurate �t, implying that an amount of interactionper vortex has been reached that is characteristic of the system. Changing β and

n to get good �ts after that point reveals no new information about the system.While there is some slight discrepancy between the exact form of the curves(the curvature of the decay amplitude just above the critical point is very slightlymismatched), this new model of dynamic vortex drag allows one to simultaneously�t the curvature of the decay amplitude and the exact location of the critical pointdramatically better than the previous static drag force model presented in Figure4.5. It is important to note that we see this kind of accuracy in �ts over a range ofdata sets, which further supports the proposition of dynamic vortex drag. Other�ts are not included in this thesis because qualitatively they are identical to the�t found in Figure 4.6, and would not provide any more useful information to thereader. This thesis serves as an initial survey of the concept of dynamic vortexdrag and is not meant as an in-depth analysis of the experimental data we haveavailable, although that could prove to be an interesting future project
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4.4 SummaryOur studies allow us to conclude that dynamic vortex interaction is indeed aphysical phenomenon that must be considered when modeling quantized vortexdynamics in thin-�lm super�uid 4He systems. Our incorporation of the β param-eter results in remarkably better �ts of experimental data that has for many yearsbeen unable to be reconciled with theory. While the previous theoretical modelsof Chapter 2 allowed us to produce vortex velocity curves very similar to thosefound in this chapter, ultimately our current model is superior because it presentsa more rigorous basis for discussing vortex dynamics involving interactions withthe substrate, and also provides closed forms of the vortex velocity and criticalvelocity equations that allow us to more easily calculate theoretical free decaycurves. While re�ection coe�cients and actual �heating� is a simple way to thinkof vortex interaction intuitively, ultimately the many ways we have presented vor-tex interaction can be nicely summed up in the β term we have presented in thischapter, which simply makes arguments based on the time scales associated withthe agitation and relaxation of the vortex.

62



Ch.5 Conclusion
5.1 Dynamic Vortex DragThrough our various simulations we have deduced that incorporating dynamicvortex drag into our various models helps account for many of the de�ciences ofthe static drag model. What precisely produces this dynamic vortex drag doesnot need to be speci�ed, but we know that it is some kind of wave motion on thevortex core induced by the pinning and unpinning of the vortex on substrate defectsites, which results in a retained, nonzero kinetic energy on the core. Quantizedvortex cores are known to be capable of sustaining wave modes, particularly Kelvinwave modes, and thus we believe that these are the wave modes responsible forthis dynamic interaction with the substrate. Whether we model this agitationas a heating associated with a core re�ection coe�cient, a physical distortionresulting in a change in the geometry of the vortex that leads to reduced pinning,or simply as a time scale argument based on the interaction of the vortex withthe substrate, we arrive at similar dynamical results involving vortex motion andreduced pinning. It is therefore important to not lock oneself into thinking of thisdepinning in any one particular way, but more as a general agitation on the core.Using our dynamic drag model, we determine that there are between 200 and5,000 vortices present on the resonator surface in any given experiment. We havealso learned that β

n
, the interaction per vortex, is the important physical paramaterof our model to be considered in future studies.
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5.2 Quantum SwirlingPrevious studies have been performed examining the quantum swirling of vor-tices on the resonator substrate [16]. In these experiments, there were found to bedistributions of vortices present at di�erent radii away from the resonator center.However, in all studies there was found to be an unexpected number of vorticesclumped near the center of the resonator. This was thought to be the result ofmany vortices being generated over the entire resonator, and then pushed intothe middle as a result of the Magnus force acting on them during the third sound�ows. When trying to model this center-heavy distribution, there was a failure inmatching experimental data. The static friction drag model was incapable of ex-plaining the extent of the clumping of vortices near the center of the resonator cell.Dynamic vortex drag could serve as a possible explanation for this phenomenon.In the dynamic vortex drag model, the vortex pinning force is reduced as thevortex drags along the substrate. If the pinning force is reduced, then it will beeasier for these vortices to move along the substrate, allowing them to be pushedcloser to the middle of the resonator. This could, in turn, possibly explain theclumping of vortices near the middle of the resonator cell. While there are manydetails to be worked out in this proposition of a solution to the quantum swirlingproblem, it is the logical next step in validating the theory of dynamic vortex dragusing other experiments performed in the Quantum Fluids Laboratory.5.3 ConclusionThis thesis set out to determine whether or not the proposition of dynamicvortex drag resulting from Kelvin wave excitations on a vortex core could helpexplain heretofore unreconciled anomalous free decay data. We have implementeddynamic vortex drag in many di�erent forms, and have discovered that all of theimplementations are potentially capable of explaining phenomena that the static64



drag model has failed at describing. The most sophisticated implementation foundin Chapter 4 showed itself to be capable of precisely �tting and explaining anoma-lous free decay data that have not been explained previously. We thus concludefrom our studies that dynamic vortex drag is very likely an important physicalphenomenon to be considered in thin-�lm super�uid 4He systems. The next logi-cal step in the application of the dynamic drag model is in attempting to explainquantum swirling phenomena described in the previous section, as an e�ectiveapplication of this model to an entirely di�erent experimental phenomenon wouldhelp to put the proposition of dynamic vortex drag on solid ground.
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Appendix A - A Generic Fourier Problem
Given the boundary condition x(t) on the vortex core tip, �nd the functiony(t) in the expression below using only the slow branch of the dispersion relation,i.e. neglect all negative frequencies (frequencies that travel with the circulation)in the Fourier Analysis

x(t) + iy(t) = 2 1√
2π

´∞
0

g(ω) · e−iω·tdω (A.1)where
g(ω) = 1√

2π

´∞
0

x(t) · eiω·tdt (A.2)Use a carefully de�ned θ function (step function):
x(t) + iy(t) = 2 1√

2π

´∞
−∞ θ(ω)g(ω)e−iω·tdω (A.3)with

θ(ω) = 1
2πi

´∞
−∞

eiω·t

t−ıλ
dt λ→ 0 + ε (A.4)Substitute all known expressions
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x(t) + iy(t) = 2 1√
2π

´∞
−∞

(

1
2πı

´∞
−∞

eiω·s

s−iλ
ds

)(

1√
2π

´∞
−∞ x(u)eiω·udu

)

e−iω·tdω λ← 0 + ε (A.5)Use the expression
´∞
−∞ ei(s+u−t)ωdω = 2πδ(s+ u− t) (A.6)

x(t) + i · y(t)= 1
iω

´∞
−∞

x(t−s)
s−iλ

ds λ→ 0 + ε (A.7)Proceed by carefully evaluating the limit:
x(t) + iy(t) = 1

iω

´∞
−∞ x(t− s) s+iλ

s2+λ2 ds = x(t)− i
π

´∞
−∞ x(t− s) s

s2+λ2 ds λ← 0(A.8)Resulting in the �nal expression for y(t)
y(t) = 1

π

´∞
−∞ x(t− s) s

s2+λ2ds λ← 0 (A.9)
Gaussian Example

x(t) = A√
2πσ2

e−
1
2(

t
σ )

2

67



Evaluate y(t):
y(t) = − 1

π

´∞
−∞

A√
2πσ2

e−
1
2(

t−s
σ )

2
1
s
dsEvaluating this integral via Mathematica yields

y(t) = − A√
2πσ2

e−
1
2(

t
σ )

2

erfi
(

t
σ
√
2

)

where
erfi (x) = 2√

π

´ x

0
eu

2
duwhich can be used to evaluate the y(t) associated with a Gaussian x(t) boundarycondition in time.
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Appendix B - Geometrical Re�ectionCoe�cient
In this appendix we attempt to describe the re�ection and transmission processassociated with a traveling wave re�ecting o� of a super�uid �lm vortex surface.This argument is purely geometrical and includes none of the hydrodynamic de-tails of the system.

Figure B.1 - Force balancing on a di�erential section of the vortex core.We begin by force balancing with Newton's Second Law in the radial componentof the vortex core
∂vr
∂t

= (P−−P+)·A
M

= ρg(n−−n+)dφR(s)h
ρdφR(s)h·4s

= g(n−−n+)
4s

= −g ∂η
∂s

(B.1)Now doing the same thing in the φ component:
∂vφ
∂t

= (P−−P+)·A
M

= ρg(n−−n+)dφh4s
ρdφR(s)h4s

= −g
R(s)

∂η
∂φ

(B.2)69



Next we can balance the volume �ow rate in the system:
Area · ∂η

∂t
=

·
v− −

·
v+ = (vr(dφR(s)h))− − (vr(dφR(s)h))+ + (vφhds)

−
− (vφhds)

+ (B.3)Where the area is simply equal to dφR(s)ds.Rewriting B.3, we can arrive at the relation
∂η
∂t

= −h
R(s)

[

∂
∂s
(R(s)vr) +

∂vφ
∂φ

] (B.4)Since these are traveling waves, they take the standard form of
x(t) = ei(mφ−ωt) (B.5)So we can integrate Equations B.1, B.2, and B.4 and combine them to arrive atthe expression

−iωη = −h
R(s)

[

∂
∂s
(R(s) g

iω
∂η
∂s
) + im(m

ω
g

R(s)
η)
] (B.6)Assuming that g has no s dependence, one can rewrite Equation B.6 in thefollowing form

∂2η
∂s2

+ R′(s)
R(s)

∂η
∂s

+
(

k2 − m2

R(s)2

)

η = 0 (B.7)
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where k2 = ω2

gh
. Using the relation that

k2 = q20 − m2

a2
(B.8)and assuming letting a = 1, we can write down the �nal form of the di�erentialequation describing the dynamics of our system:

∂2η
∂s2

+ R′(s)
R(s)

∂η
∂s

+
(

q20 +m2(1− m2

R(s)2
)
)

η = 0 (B.9)Equation B.9 is the di�erential equation that governs the dynamics of thesystem for an arbitrary geometry, R(s).

Figure B.2 - R(s) vs s for a given vortex core.We wish to know the solution to this equation along the whole extent of thecore. We are already aware of what the solutions are to the surface waves at large71



s values. They are given by traveling Bessel Functions, but for s >> m, reducedown to the form
η(s) = eiks√

ks
(B.10)Equation B.9 is construcucted speci�cally so that when s gets very negative,(i.e. the core radius is constant), you essentially just have simple harmonic motionon the core. Since we wish to know the amplitudes, and not just the types, of wavesassociated with this system, we use 4th order Runge-Kutta numerical integrationto develop a solution to η(s) for all s.Once the solution to η(s) is known for all s, or more importantly at the surfaceof the vortex and on the straight core length, one can then go about determininga re�ection coe�cient through a comparison of the amplitudes of the incoming(core) and outgoing (surface) waves through simple complex analysis. A simplemeans of doing this is by plotting the real and imaginary components of η(s) onthe x and y axis, respectively. If there is no re�ection, then plotting the datathis way should result in a perfect circle, because the amplitude of the wave hasnot been in�uenced by the geometry of the vortex. However, if re�ection doesoccur, then the data should show the circle deforming into an ellipse, where onecan determine information regarding the re�ection coe�cients from the length ofthe major and minor axes of the ellipse.

72



Bibliography
[1] David R. Tilley and John Tilley. Super�uidity and Superconductivity. HalstedPress, New York, 1974.[2] Anand Swaminathan. Vortex Dissipation in Super�uid Third Sound Flows.Undergraduate Honors Thesis, Wesleyan University, Middletown, CT, 2009.[3] Russel J. Donnelly. Quantized Vortices in Helium II. Cambridge Studies inLow Temperature Physics. Cambridge University Press, Cambridge, 1991.[4] Ian Carbone. Steady State and Transient Third Sound Behavior.Undergraduate Honors Thesis, Wesleyan University, Middletown, CT, 2006.[5] K.W. Schwarz. �Three-dimensional vortex dynamics in super�uid4He :Line-line and line-boundary interactions�. Physics Review B, 31:5782-5804, 1985.[6] L. Hough L.A.K. Donev and R.J. Zieve. �Depinning of a super�uid vortexline by Kelvin waves�. Physics Review B, 64:180512-180516, 2001.[7] W. Thomson, Philos. Mag. 10, 155 (1880); J.J. Thomson, A Treatise on theMotion of Vortex Rings (Macmillan, London, 1883).[8] C.F. Barenghi R.Hanninen and M. Tsubota. �Anomalous translationalvelocity of vortex ring with �nite-amplitude Kelvin waves�. Physical Review E ,74:046303-046303-5, 2006.[9] W.F. Vinen M. Tsubota and A. Mitani. �Kelvin-Wave Cascade on a Vortexin Super�uid 4He at a Very Low Temperature�. Physical Review Letters, 91:135301-135301-4, 2003.[10] Shoji Fujiyama Risto Hanninen and Makoto Tsubota, �Vortex Pinning to aSolid Sphere in Helium II�, J Low Temp Phys, 148:263-267, 2007.[11] Oliver Ryan. Vortices in Liquid Helium. Undergraduate Honors Thesis,Wesleyan University, Middletown, CT, 1992.73



[12] F. M. Ellis and C. Wilson. "Excitation and Relaxation of Film FlowInduced by Third Sound", J. Low Temp. Phys., 113, 411 1998.[13] Charles Kittel. Introduction to Solid State Physics, 8th Edition, Wiley, 2004.[14] Love et al.; Estro�, Lara A.; Kriebel, Jennah K.; Nuzzo, Ralph G.;Whitesides, George M. "Self-Assembled Monolayers of Thiolates on Metals as aForm of Nanotechnology". Chem. Rev. 105 (4): 1103�1170. 2005[15] F. M. Ellis and H. Luo. "Low Temperature Exponential and Linear FreeDecay of Third Sound Resonances", Physica, B169, 521 (1991).[16] Crista Wilson. Swirling Super�uid 4He Films. Ph.D Thesis, WesleyanUniversity, Middletown, CT, 1998.

74


