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We control the direction and magnitude of thermal radiation, between two bodies at equal temperature
(in thermal equilibrium), by invoking the concept of adiabatic pumping. Specifically, within a resonant
near-field electromagnetic heat transfer framework, we utilize an instantaneous scattering matrix approach
to unveil the critical role of wave interference in radiative heat transfer. We find that appropriately designed
adiabatic pumping cycling near diabolic singularities can dramatically enhance the efficiency of the
directional energy transfer. We confirm our results using a realistic electronic circuit setup.
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Introduction.—Understanding the rules that dictate ther-
mal radiation and the development of novel schemes that
allow us to tame its flow has offered over the years an
exciting arena of research [1–4]. From one side, there are
fundamental challenges associated with basic constraints
that need to be understood in order to manage thermal
radiation [4–8]. At their core are questions associated with
the importance of thermal electromagnetic fluctuations and
their implications in directional thermal radiation. On the
other hand, there is a wide range of applications that can
benefit from advances in thermal radiation management. In
fact, in close connection with the rapid developments that
we are witnessing in the field of nanophotonics, the
subfield of thermal photonics has emerged [9–20] and
promises to revolutionize modern energy technologies.
Examples include thermophotovoltaics [21–24], thermal
imaging [25,26], thermal circuits [27–29], and radiative
cooling [30].
In this Letter, we propose manipulating thermal radiation

by introducing the concept of an adiabatic thermal radiation
pump. The pump operates between two reservoirs that are
maintained at the same temperature—as opposed to the
common approach where heat flow requires a temperature
gradient. A possible setup of a thermal radiation pump is
depicted in Fig. 1(a). By slow periodic modulation of the
eigenfrequencies of two resonators, coupled to two separate
reservoirs at equal temperature T, one can transfer thermal
radiation from one reservoir to the other (see green arrows).
This process of creating a directional radiation flow may be
termed adiabatic thermal radiation pumping. The amount
of heat pumped in one cycle depends on the details of the
modulation process. In particular, we show that the
existence of a diabolic point (DP) (i.e., an exact degen-
eracy) [31] in the spectrum of the system’s Hamiltonian
leads to a dramatic enhancement of the effect, for an
appropriately chosen modulation cycle. Our theoretical

results are based on a coupled-mode-theory (CMT)
approach to resonant thermal radiation and are backed
up by detailed numerical simulations using realistic circuit
setups; see Fig. 1(b). Our approach unveils the importance
of wave interference in radiative heat transfer by connect-
ing the pumped thermal radiative current with the instanta-
neous reflection phase. This connection opens up new
possibilities in the field of thermal photonics. Our concept
of the adiabatic thermal radiation pumping is inspired by
adiabatic charge pumping in condensed matter, where a dc
current in response to a slowly varying time-periodic

FIG. 1. Proposed implementations of our thermal radiation
pumping scheme. (a) A nanophotonic structure consisting of
three single-mode resonators. The resonant frequencies of the first
and third resonators (purple colors) are periodically modulated via
aweak adiabatic modulation of the permittivities of the resonators.
The system is in contact with two independent baths at the same
temperature T. (b) A circuit consisting of three LC resonators.
Two of these resonators are modulated via their (purple) capac-
itances. The circuit is coupled capacitively to two artificial
reservoirs at the same temperature T. The reservoirs are imple-
mented by synthesized noise sources generating random voltages
Vs
1;2 with a prescribed spectral distribution. The positive direction

for the pumped flow is chosen to match the green arrows.
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potential has been proposed [32–37] and experimentally
demonstrated [38].
CMT modeling of thermal radiation.—We consider a

photonic circuit supporting a finite number of resonant
modes Ns described by a time-independent Hamiltonian
H0. The system is in contact, via leads, with two separate
heat baths at constant temperature [see Fig. 1(a), where
Ns ¼ 3]. The system-lead coupling is described by an
operator Ŵ.
At thermal equilibrium, the baths generate photons at

frequency ω with mean number ΘTðωÞ ¼ ðeðℏω=kBTÞ − 1Þ−1
given by the Bose-Einstein statistics. The radiative thermal
energy exchange between the two heat baths can be studied
using a time-dependent CMT [39,40]

{
d
dt
Ψ¼HeffΨþ {ŴθðþÞ; Heff ¼

�
H0 þΛ−

{
2
ŴŴT

�
;

θð−Þ ¼ ŴTΨ− θðþÞ; ð1Þ

where Ψ ¼ ðψ1;ψ2;…;ψNs
ÞT describes the modal ampli-

tude of the field and it is normalized in a way that jψ sj2
represents the energy of the sth mode. The variables

θð�Þ
n ðωÞ [frequency domain of θ� in Eq. (1)] indicate the
flux amplitudes of the incoming (þ) and outgoing (−)
waves from and towards the reservoir n ¼ 1, 2 via leads. At
thermal equilibrium, the incoming flux (from the reser-
voirs) satisfies the correlation relation [39]

hθðþÞ
n ðωÞ(θ(þÞ

m ðω0Þ)�i ¼ ℏω
2π

ΘTðωÞδðω − ω0Þδnm; ð2Þ

and therefore the outgoing power from the nth heat bath is
given by the double integral over frequency ω of this
correlation function.
The scattering matrix S, connecting the outgoing θ−ðωÞ

to the incoming θþðωÞ waves, is evaluated using Eq. (1).
We have [41]

S ¼ −I2 − {WTGeffW; Geff ¼
1

Heff − ωINs

; ð3Þ

where In is the n × n identity matrix. The (Ns × 2)-
dimensional matrix W describes the coupling to the leads
(in frequency domain). Its elements are Ws;n ¼ ffiffiffiffiffivgp wnδsn,
where wn are dimensionless coupling strengths, and
vg ¼ ∂ωðkÞ=∂k. Finally, the renormalization matrix Λ in
Eq. (1) originates from the coupling of the system with the
leads, and it is specific to the properties of the leads.
Thermal radiation pumps.—Next, we consider a system

whose Hamiltonian H0ðut; vtÞ depends on two time-
varying independent parameters ðut; vtÞ [42]. We assume
that these parameters are periodically modulated in time
with frequency Ω such that H0ðtÞ ¼ H0ðtþ 2π=ΩÞ.
During one period of the modulation, these parameters

form a closed cycle in the ðut; vtÞ parameter space.
The associated enclosed “pumping area” is A≡R 2π=Ω
0 dtutðdvt=dtÞ. We consider circumstances where
the ðut; vtÞ variations are small such that A → 0.
We will evaluate the radiative (time-averaged) thermal

energy flux per pumping area Ī , from one bath to another
during one pumping circle. The latter is

Ī ≡ Ω
2π

Z
dω
2π

ℏωΘTðωÞQðωÞ;

QðωÞ≡ lim
A→0

R 2π
Ω
0 dtIx0ðt;ωÞ

A
; ð4Þ

where QðωÞ is the radiative energy density (i.e., per area in
the parameter space) and Ix0ðt;ωÞ is the dimensionless
(normalized) time-dependent directional net energy cur-
rent, at some observation cross section at x ¼ x0 within the
leads. The latter is evaluated under the condition of two
uncorrelated counterpropagating incoming waves of fre-
quency ω and unit flux. In the case where H0 is static, the
thermal radiative current I at each lead is zero. From
Eq. (4), it is clear that an understanding ofQðωÞ is essential
for the analysis and control of Ī [44].
Adiabatic pumping.—In the adiabatic limit, Ω → 0, the

study of radiative thermal energy QðωÞ boils down to the
analysis of the instantaneous scattering matrix St [32].
The latter is given by Eq. (3), with the superscript t
indicating the parametric dependence of the matrix ele-
ments of S at a specific instant t during the pumping cycle.
It can be generally parametrized in terms of three inde-
pendent parameters: the instantaneous reflectance Rt and
the instantaneous reflection and transmission phases αt,
φt ∈ R, respectively. Specifically, we have

St ¼ e{φ
t

� ffiffiffiffiffi
Rt

p
e{α

t
{

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Rt

p

{
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Rt

p ffiffiffiffiffi
Rt

p
e−{α

t

�
; 0 ≤ Rt ≤ 1: ð5Þ

Using this parametrization, we write QðωÞ as [42]

QðωÞ ¼ 1

ω

∂ðωPÞ
∂ω ;

PðωÞ ¼ lim
A→0

1

A

Z
2π
Ω

0

dtRt dα
t

dt
¼
���� ∂ðR

t; αtÞ
∂ðut; vtÞ

����; ð6Þ

which applies whenever the period of the driving is larger
than the time that the “photons” dwell inside the scatterer.
We stress that Eq. (6) allows us to connect wave interfer-
ence phenomena (imprinted via the reflection phase αt)
with the thermal radiation problem, thus opening up new
directions in the field of thermal photonics. Using Eqs. (3)
and (5), we have

Rt ¼ jSt11j2;
dαt

dt
¼ 1

2{
d
dt

�
ln
St11
St22

�
; ð7Þ

where the subscripts indicate the matrix elements of St.
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Substitution of Eq. (6) into Eq. (4) allows us to
express Ī as

Ī ¼ Ω
2π

Z
dω
2π

�
−
∂ΘTðωÞ
∂ω ℏω

�
Pðω; d; fwngÞ; ð8Þ

where for near-resonant thermal radiation the boundary
contributions (associated with the integration by part)
are neglected. Note that the integral

R 2π=Ω
0 dtRtðdαt=dtÞ

appearing in PðωÞ plays a prominent role in the case of
adiabatic charge pumping near zero temperature [32–37]. It
was found that it can be quantized (in units of 2π) only
when a significant portion of resonance line at the Fermi
level is encircled [45–47]. This condition is not applicable
in our case, where the quantity of interest is the pumping
density defined in the limit of infinitesimally small pump-
ing circle A → 0. At the same time, even in the adiabatic
charged pumping framework, there are many circumstan-
ces where the quantization does not occur [45,46,48]. This
discrepancy is related to the presence of the instantaneous
reflectance RtðωÞ, and thus this integral is generally not a
topological number [49].
In the current framework of thermal radiation, the

thermal energy flux density Ī is more convoluted than
the pumped electron charge. From Eq. (8), we see that Ī
involves a weighted integral of PðωÞ where the weight,
indicated by the large parenthesis in Eq. (8), is a smooth
positive function of ω. We therefore conclude that the main
contribution to Ī originates from a frequency range around
transmission resonances, where PðωÞ becomes significant
due to the rapid changes of the instantaneous reflection
phase αt and reflectance Rt. In the case of near-field
resonant thermal transport, these resonances are associated
with the poles of the scattering matrix equation (3). When a
pair of nearby resonances approach one another, they can
further enchance the sensitivity of αt and Rt on the
parameters of the pump, thus increasing the pumping-
induced thermal energy flux density Ī. Below, we dem-
onstrate how one can engineer such a scenario by utilizing
the existence of a DP degeneracy.
A prototype CMT model and parametric analysis of

eigenmodes of the effective Hamiltonian.—We consider a
prototype system of three coupled resonant modes that
supports a DP degeneracy. The isolated system is described
by the instantaneous CMT Hamiltonian

Ht
0 ¼

2
64
ω0 þ vt −1 1

−1 ω0 −1
1 −1 ω0 þ ut

3
75: ð9Þ

When ut ¼ vt ¼ 0, the eigenfrequencies of Ht
0 are að0Þ1 ¼

að0Þ2 ¼ ωDP ¼ ω0 − 1 (DP degeneracy) and að0Þ3 ¼ ω0 þ 2.
In the neighborhood of the DP degeneracy, we can invoke a
degenerate perturbation theory in order to analyze the

eigenfrequency spectrum. Specifically, the projection of

Ht
0 in the degenerate eigenspace fjað0Þ1 i; jað0Þ2 ig is the 2 × 2

Hamiltonian Ht;ð2Þ
0 [42],

Ht;ð2Þ
0 ¼ g0I2 þ gxσx þ gzσz; ð10Þ

where σx, σz are the Pauli matrices, g0¼ω0−1þ1
3
ðutþvtÞ,

gx ¼ ðut − vtÞ=ð2 ffiffiffi
3

p Þ, and gz ¼ 1
6
ðut þ vtÞ. Therefore,

the eigenvalue spectrum of Ht
0 around ωDP is appro-

ximated by the eigenvalues of Ht;ð2Þ
0 . The latter

are at1;2 ≈ g0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2z

p
¼ ω0 − 1 þ 1

3
ðut þ vtÞ �

1

2
ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðut − vtÞ2 þ 1

3
ðut þ vtÞ2

q
, indicating that when

ðut; vtÞ move away from (0,0) along an arbitrary line
ut ∝ vt, the eigenfrequency splitting is linear; see
Fig. 2(a). The associated conical intersection signifies
the presence of a DP, i.e., a spectral degeneracy where
the Hamiltonian possesses two linearly independent eigen-
vectors [31].
When the isolated system of Eq. (9) is coupled to leads,

the eigenfrequency surfaces “evolve” to resonance surfaces.
The associated resonant frequencies are the real parts of
the poles of the S-matrix which are identified with the
complex eigenvalues fang of the effective Hamiltonian
Ht

eff ¼ Ht
0 þ Λ − ði=2ÞŴŴT . For simplicity, we assume a

wide-band approximation [42]. In the weak coupling limit
jεj → 0 and when ðut; vtÞ vary around (0,0), we can employ

a similar analysis as before. Specifically, Ht;ð2Þ
0 → Ht;ð2Þ

eff

via the substitution in Eq. (10) of ðg0; gzÞ → ðg0 − 2
3
{ε2;

gz → gz − 1
3
{ε2Þ. Diagonalization of Ht;ð2Þ

eff for ϵ ≠ 0

indicates that the DP split into two exceptional
points (EPs), emerging at ðut;vtÞ¼ð1= ffiffiffi

3
p Þε2ð1;−1Þ and

ð1= ffiffiffi
3

p Þε2ð−1;1Þ; see Fig. 2(b). A characteristic signature of
the EP singularity is the fact that the degeneracy lifting

FIG. 2. Eigenvalue surfaces of the effective Hamiltonian Ht
eff

around ωDP ¼ ω0 − 1, when (a) the coupling strength ε ¼ 0, and
(b) ε ¼ −0.2. When the system is coupled to leads, the DP
[indicated by the green dot in (a)] evolves into two EPs; see the
red dots in (b). Another common parameter is ω0 ¼ 3.
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follows a square root behavior with respect to the distance
from the EP. For example, around the EP ðut; vtÞ ¼
ð1= ffiffiffi

3
p Þε2ð1;−1Þ, we have an eigenvalue splittingat1 − at2 ≈

−ð2 ffiffiffi
2

p
=3Þe−{π=12ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ut − ð1= ffiffiffi

3
p Þε2

q
when fixing vt ¼

−ð1= ffiffiffi
3

p Þε2 and varying ut.
At parameter values ðut; vtÞ corresponding to the

line ut þ vt ¼ 0 which connects the two EPs, the eigen-
values of the system take the form at1;2 ≈ ω0 − 1 − 2

3
{ε2�

ð1= ffiffiffi
3

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðutÞ2 − 1

3
ε4

q
. On the line ut þ vt ¼ 0, when

jutj ≤ ð1= ffiffiffi
3

p Þε2, the real part of the eigenvalues are
degenerate; see Fig. 2(b). The presence of this resonance
degenerate line (RDL) imposes a sense of directionality in
the ut − vt parameter space, and “enforces” a detailed
analysis of pumping for small cycles centered along and
perpendicular to it. In fact, this argument predicts that
driving cycles placed symmetrically in the ut − vt plane
with respect to the RDL will lead to the same behavior
of Ī [42].
Examples of adiabatic pumps.—In our examples, we

parametrize the pumping circle in Eq. (9) as ut¼
uð0Þþδut, vt¼vð0Þþδvt with ðuð0Þ;vð0ÞÞ¼ðdcosθ;dsinθÞ
and δut ¼ δutþ2π=Ω, δvt ¼ δvtþ2π=Ω. The pair ðuð0Þ; vð0ÞÞ
determines the center of the adiabatic cycle, and it is
reparametrized with θ and d in polar representation.
We also assume tight-binding leads with dispersion ω ¼
ω0 − 2 cos k that are coupled to the scattering target with
coupling constants wL ¼ wR ¼ ε.
First, we choose θ ¼ 450, δut ¼ r cosΩt, and δvt ¼

r sinΩt, corresponding to a pumping cycle with a center
along the line perpendicular to the RDL. The latter is
embedded in the plane ω ¼ ωDP ¼ ω0 − 1; see Fig. 2(b). In
Fig. 3(a), we report the numerical calculations for Ī
evaluated using Eqs. (4) and (6). In fact, one can derive
analytically the following expression for the total radiative
(time-averaged) energy flux Ī per pumping area [42]

Ĩ ≈
Ω
2π

�
ℏω

∂ΘTðωÞ
∂k

�
ωDP

4
ffiffiffi
3

p
ε4ðε2 − ffiffiffi

2
p

dÞ
½ðε2 − ffiffiffi

2
p

dÞ2 þ 12ε4�2 ; ð11Þ

which nicely matches the numerics; see Fig. 3(a).
Equation (11) is obtained from Eq. (8) using the residue
theorem. Essentially, it describes the contribution of two
terms, i.e.,

Ī ∝
X
n∈pair

Res½PðωÞ;ωn�; ð12Þ

where Resð·Þ indicates the residue. The summation is over
a pair of PðωÞ poles near the DP, which are associated
with the intersection of the vertical line ðut; vt;ωÞ ¼
ðuð0Þ; vð0Þ;ωÞ with each of the two resonant surfaces shown
in Fig. 2 [42]. The contributions of these two resonance
surfaces appear to be the opposite of each other. It turns out
that on each side of the RDL, either the upper or the lower
resonance surface dominates the summation for the total
current, leading to a net current which is either positive or
negative; see Fig. 3(a). In contrast, when the center of the
cycle moves far away from the RDL, both contributions
diminish and the net current approaches zero. In this limit,
the HamiltonianHt

0 of the isolated system does not support
a DP.
On the other hand, in the vicinity of the degenerate line,

the contributions of the two resonant surfaces to Ī change
abruptly. At some critical distance d ¼ 0.007, they balance
one another and result in a zero net current; see Fig. 3(a). At
d ¼ 0, the two resonance surfaces merge, and therefore the
summation collapses to one term, leading to a large value of
the net current Ī . In fact, the last argument is also
applicable to the case of θ ¼ 1350, corresponding to a
pumping cycle whose center moves along the RDL. In this
case, the net current acquires large values for d ≈ 0, while it
diminishes symmetrically as jdj increases; see Fig. 3(b). We
point out that the extrema of Ī appears always in the
vicinity of the DP corresponding to Ht

0ðd ¼ 0; r ¼ 0Þ.
Furthermore, when the coupling to the leads jϵj increases,
the DP degeneracy is lifted, and thus the performance of the
pump deteriorates; see Fig. 3. For further details and other
values of θ, see the Supplemental Material [42].
Adiabatic pumping using circuits.—An experimental

demonstration of the effects of DPs on the adiabati-
cally pumped thermal radiation can be achieved using
the electrical circuit shown in Fig. 1(b) [42]. The
reservoirs are represented by a model for bandwidth
limited Thevenin equivalent TEM transmission lines
with characteristic impedance Z0 ¼ 50 Ω. The noise
sources Vn are synthesized such that hVnðωÞV�

mðω0Þi ¼
ð2Z0=πÞΦðωÞδðω − ω0Þδnm, where ΦðωÞ ¼ kBTΘðωÞ. For
demonstration purposes, we set ΘðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω=2ωcÞ2

p
,

with ωc ≈ 0.47 GHz. The pumping scheme is chosen to
always enclose a DP [42]. Specifically, we consider a

FIG. 3. Numerical evaluation (dashed lines) of rescaled radi-
ative (time-averaged) thermal energy flux Ī × ð2π=ΩÞ versus the
control parameter d for driving angles (a) θ ¼ 45° and
(b) θ ¼ 135°. The coupling ϵ between the leads and the system
is indicated in the insets. In (a), we also report the theoretical
result (symbols) of Eq. (11). Other parameters are kBT=ℏ ¼ 1.25
and ω0 ¼ 3 (in units of coupling strength).
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periodic modulation of the capacitances at left and right
resonators such that C1ðtÞ ¼ C½1þ r sinðΩtÞ�, C2ðtÞ ¼
C½1þ r cosðΩtÞ�.
Next, we inject into the circuit uncorrelated incoming

waves of the same frequency ω and power Ps ¼ V2
s=ð8Z0Þ

from the left (L) and right (R) reservoir. The average (over a
cycle) net power flowing through the node L (R) is
obtained from the voltage vLðRÞðtÞ and current iLðRÞðtÞ
sampled at the respective node L (R) [42]. Specifically,
QðωÞ is evaluated using Eq. (4), where the time-dependent
energy current is ILðRÞðt;ωÞ ¼ vLðRÞðt;ωÞiLðRÞðt;ωÞ=Ps.
In our simulations, we made sure that the system reached a
stationary state before the evaluation. The results from the
time-domain simulations are shown in Fig. 4(a) together
with the outcome from the instantaneous St-matrix
approach; see Eq. (6).[50] In the latter case, we have
extracted the instantaneous reflectance Rt and reflection
phase αt using a standard scattering approach (see the
Supplemental Material [42]) [51].
Having at our disposal the total radiative energy density

QðωÞ for the circuit setup, we are now able to incorporate
ΦðωÞ for the radiative thermal energy flux (per pumping
area) passing through the system, Ī versus μ. In Fig. 4(b),
we report our findings using the instantaneous St matrix
and the direct time-domain approaches. The data nicely
demonstrate the enhancement in Ī due to the presence of
the DP, as expected from the predictions of CMT.
Conclusions.—We introduced the concept of adiabatic

thermal radiation pumps as a means to manage the direction
of net radiative energy current between bodies in equilib-
rium. We addressed this problem by appropriately adopt-
ing, and establishing in the framework of resonant near-
field thermal radiation, an instantaneous scattering matrix
formalism. Using this tool, we highlighted the importance
of wave interference effects and demonstrated the impact of
DP spectral singularities in thermal radiation management.
Our results have been tested against realistic simulations
using electronic circuits. An exciting application of our

proposal might involve tunable superconducting resonators
[52,53], which will enable new forms of superconducting
Q-bit manipulation. A future interesting direction is the
study of the full counting statistics for thermal radiation.
These questions will be addressed in a subsequent study.
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current Î versus the mutual inductance μ. The highest values of Î
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