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We introduce a new family of generalized P ~T-symmetric cavities that involve gyrotropic elements and
support reconfigurable unidirectional lasing modes. We derive conditions for which these modes exist and
investigate a simple electronic circuit that experimentally demonstrates their feasibility in the radio-
frequency domain.
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In the past few years, there has been great interest in
systems that obey parity-time (PT ) reversal symmetry
[1–20]. In particular, the implementation of PT-symmetric
ideas in optics [3–5] and electronics [16–18] has provided
experimental grounding of novel PT -symmetric concepts.
At the same time, it has been realized that PT symmetry

is a special case of antilinear operators [14,15,21,22]. Given
the success of the former class of systems as hosts of new
phenomena, it is natural to expect that extensions to structures
that respect other antilinear symmetries might lead to
unexpected features and functionalities. Along these lines,
it was recently suggested that in contrast to standard linear
PT -symmetric systems [2], the interplay of gyrotropic
elements with parity-time symmetry allows for nonrecip-
rocal transport [14]. Such structures are invariant under a
generalized P ~T symmetry, which incorporates inversion of
the gyrotropic element in addition to complex conjugation.
In this paper, we utilize this idea to propose a new class of

cavities which can support highly directional reconfigurable
lasing modes. The lasing cavity consists of a gyrotropic
element sandwiched between two active elements, one with
gain and the other one with an equal amount of loss. The total
structure is invariant under a generalized P ~T symmetry
which enforces new conservation relations for the scattering
matrix i.e., P ~T SP ~T ≡ PS†P ¼ S−1. Under these condi-
tions one can get unidirectional amplification which can turn
to lasing at a critical value of the gain and loss parameter.
Furthermore, we show that reversing the gain and loss
switches the direction of lasing thus achieving a reconfig-
urable lasing action. We demonstrate the applicability of
these ideas in the radio-frequency (rf) domain using a P ~T -
symmetric RLC circuit. To our knowledge, this is the first
experimental demonstration of a system that belongs in
the P ~T -symmetry class.
For clarity of the presentation we concentrate on one-

dimensional scattering setups which allows us to illuminate
the basic principles without the unnecessary algebraic
complications of higher dimensions. A conceptual visuali-
zation of a P ~T -symmetric scattering setup is shown in

Fig. 1(a). The red area indicates a gain domain (G) while
the green a balanced loss (L) element. The cyan area in the
middle indicates the existence of a gyrotropic element. A
monochromatic wave (with wave vector k) on the right of
the scattering domain VR ¼ Vþ

R expðikxÞ þ V−
R expð−ikxÞ

is related to the wave on the left of the scattering domain
VL ¼ Vþ

L expðikxÞ þ V−
L expð−ikxÞ via the 2 × 2 transfer

matrix M,

�
Vþ
R

V−
R

�
¼ M

�
Vþ
L

V−
L

�
: ð1Þ

The transmission and reflection coefficients for left (L) and
right (R) incident waves can be found using the boundary
conditions V−

R ¼ 0 and Vþ
L ¼ 0, respectively. These can be

expressed in terms of the transfer matrix elements as follows

rL ¼ −M21

M22

; tL ¼ detM
M22

;

tR ¼ 1

M22

; rR ¼ M12

M22

: ð2Þ

The associated transmittances and reflectances are then
defined as TL=R ≡ jtL=Rj2 and RL=R ≡ jrL=Rj2.
In contrast to unitary scattering processes where

TL¼TR¼T; RL¼RR¼R and T þ R ¼ 1 due to flux

FIG. 1 (color online). (a) A P ~T symmetric cavity. Red
indicates gain (G), green indicates loss (L) and β describes the
gyrotropic element which is placed symmetrically between the
gain and the loss domains. (b) An equivalent P ~T - symmetric EC.
Rg indicates the gyrator.
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conservation, P ~T -symmetric systems satisfy more general
conservation relations. To derive them we observe that the
parity P operator interchanges the gain and loss domains of
the cavity while at the same time transforms the left (right)
incoming (outgoing) amplitudes to their right (left) out-
going (incoming) counterparts, i.e.,

P
�
Vþ
L

V−
L

�
¼

�
V−
R

Vþ
R

�
; P

�
Vþ
R

V−
R

�
¼

�
V−
L

Vþ
L

�
: ð3Þ

The generalized time reversal operator ~T maps the incom-
ing (outgoing) wave amplitudes at each side into the
outgoing (incoming) ones with a complex conjugation,

~T
�
Vþ
L

V−
L

�
¼

�
V−
L

Vþ
L

��
; ~T

�
Vþ
R

V−
R

�
¼

�
V−
R

Vþ
R

��
: ð4Þ

In addition, the ~T operator interchanges the gain and loss
elements in the cavity and reverses the direction of the
gyrotropy β → −β. Combining the action of the P and
~T operators we get

�
Vþ
L

V−
L

��
¼ Mð−βÞ

�
Vþ
R

V−
R

��
; ð5Þ

which together with Eq. (1) leads to the relation [14]

M�ð−βÞMðβÞ¼1→

�
0 1

−1 0

�
M†

�
0 −1
1 0

�
¼M: ð6Þ

The second equation in (6) results from the first one after
employing the relation Mð−βÞ ¼ ½1= detMðβÞ�MðβÞ
imposed by the symmetry of the gyrotropic element
[23]. It is straightforward to show that Eq. (6) leads to
the following relations [15]:

Re½tLr�R� ¼ 0; Re½tRr�L� ¼ 0; tLt�R þ rRr�L ¼ 1: ð7Þ

We stress that, in contrast to standard PT symmetric
systems where tL ¼ tR, here the left and right transmissions
are not necessarily equal to one another leading to a
nonreciprocal transport [14].
Equations (7) are the consequences of generalized

unitary relations satisfied by the scattering matrix S
[14,15]. The latter provides an alternative formulation of
the scattering process in terms of incoming and outgoing
waves:

�
V−
L

Vþ
R

�
¼ S

�
Vþ
L

V−
R

�
; S ¼

�
rL tR
tL rR

�
: ð8Þ

Using Eq. (2) together with Eq. (6), we get the following
equivalent relations for the scattering matrix:

P ~T SP ~T ¼ S−1; SPS†P ¼ 1; P ¼
�
0 1

1 0

�
: ð9Þ

The eigenvalues of the P ~T -symmetric SðβÞ matrices are
not necessarily unimodular. To demonstrate this property,
we consider an eigenvector v̂n of the SðβÞ matrix with
associated eigenvalue snðβÞ. Using Eq. (9) we get

SðβÞP ~T v̂nðβÞ ¼ P ~T S−1ðβÞv̂nðβÞ ¼
1

s�nð−βÞ
P ~T v̂nðβÞ;

ð10Þ

where for the last equality we have used the fact that the
eigenvalues of S−1ðβÞ are 1=snðβÞ and that the action of ~T
on them is ~T ð1=snðβÞÞ ¼ 1=s�nð−βÞ. Equation (10) indi-
cates that P ~T v̂n is also an eigenvector of S with eigenvalue
1=s�nð−βÞ. We distinguish between two scenarios: In the
first case, the scattering matrix S and the P ~T operator
share the same eigenvector v̂n. Then Eq. (10) leads to
snðβÞv̂n ¼ ½1=ðs�nð−βÞÞ�v̂n. In this case we find that the
eigenvalues satisfy the relation snðβÞs�nð−βÞ ¼ 1 and the
corresponding eigenstates v̂n exhibit no net amplification or
attenuation; the system is in the exact phase. The alter-
native scenario involves the case where v̂n itself is not P ~T -
symmetric. In this case the pair of eigenvectors of the
S matrix can be transformed to one another via the P ~T
operator i.e., P ~T v̂n ¼ v̂m. The corresponding eigenvalues
satisfy the relation smðβÞs�nð−βÞ ¼ 1, with one eigenvector
exhibiting amplification and the other attenuation; the
system is in the broken phase.
The boundary between the exact and broken phases can

be found directly by analysis of the eigenvalues of the
scattering matrix S. The latter can be parametrized in terms
of four numbers ReðaÞ; ImðaÞ; b; c (b; c ∈ R) as

S ¼ 1

a

�
ic 1

jaj2 − bc ib

�
: ð11Þ

The corresponding eigenvalues are 1
2a ½iðbþ cÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jaj2 − ðbþ cÞ2
p

� and they are unimodular (exact phase)
when 4jaj2 − ðbþ cÞ2 ≥ 0. The equality is satisfied at the
spontaneous P ~T -symmetric phase transition. The latter
condition can be written in terms of rL; rR as

jrLj2 þ jrRj2 þ 2rLr�R ¼ 4: ð12Þ

Next, we define the conditions at which aP ~T -symmetric
system behaves as a unidirectional laser. We require that the
output field in one direction, say the left, be amplified while
attenuated in the opposite direction. In terms of trans-
missions and reflections, the above condition reads as

rL → ∞; tL → 0; tR → ∞; rR → 0: ð13Þ
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Equations (13) and the P ~T -symmetric constrains Eqs. (7)
can be simultaneously satisfied. Equations (13) are written
in terms of M-matrix elements using Eq. (2). We get

M22ðω; β; γÞ ¼ 0 ðlasing conditionÞ
M12ðω; β; γÞ ¼ 0 ðunidirectionality conditionÞ: ð14Þ

In this framework, the complex frequencies ω for which
M22ðω; β; γÞ ¼ 0, correspond to the poles of the scattering
matrix. Due to flux conservation and causality relations
they lie on the lower part of the complex plane when a
parameter γ that controls the degree of gain and loss
strength of the two active elements is equal to zero. As
γ is increased, the poles move towards the real axis. Lasing
action is achieved at a critical γcr, at which the first of these
poles ω cr crosses the real axis. If the second condition in
Eq. (14) is also satisfied at ωcr, we get detM → 0 ≠ 1
which characterizes nonreciprocal transport in P ~T -
symmetric systems (see Eqs. (2) and [14]).
The direction of the unidirectional lasing mode can be

reversed (say from left to right) by interchanging the spatial
distribution of gain and loss elements i.e., γ → −γ.
Application of the parity operator Eq. (3) to the transfer
matrix relation Eq. (1) results in the relation

�
V−
L

Vþ
L

�
¼ Mð−γÞ

�
V−
R

Vþ
R

�
: ð15Þ

Using Eq. (15), together with the boundary condition
V−
R ¼ 0 we get that V−

L=V
þ
L ¼ M12ð−γÞ=M22ð−γÞ and

Vþ
R=V

þ
L ¼ 1=M22ð−γÞ. The left sides of these equalities

(supplemented with the boundary condition V−
R ¼ 0) define

rLðγÞ and tLðγÞ respectively. The right sides are equal to
rRð−γÞ and tRð−γÞ [see the definitions Eqs. (2)]. Therefore,
rLðγÞ ¼ rRð−γÞ and tLðγÞ ¼ tRð−γÞ which allows us to
conclude that reversing the gain and loss in a unidirectional
lasing cavity that supports, say left lasing action [satisfying
Eq. (13)], will result in a right unidirectional lasing.
We demonstrate the validity of the P ~T -symmetric

unidirectional lasing utilizing the framework of electronic
circuits. Our system [see Fig. 1(b)] consists of two pairs of
capacitively coupled RLC oscillators, one with amplifica-
tion [left side of Fig. 1(b)] and the other with equivalent
attenuation [right side of Fig. 1(b)]. The loss is provided by
standard resistors R while gain is implemented with a
negative impedance converter (NIC) −R. The gain and loss
parameter is defined as γ ¼ ffiffiffiffiffiffiffiffiffi

L=C
p

=R, the uncoupled
frequency of each resonator is ω0 ¼ 1=

ffiffiffiffiffiffiffi
LC

p
, and the

capacitive coupling between the two pairs is Cc ¼ κC.
The circuit is connected to transmission lines (TL) with
impedance Z0 on each side. We also define a dimensionless
TL conductance η ¼ ffiffiffiffiffiffiffiffiffi

L=C
p

=Z0.
The gyrotropic element that it is responsible for the

violation of standard time-reversal symmetry (i.e., t → −t)
is implemented in the circuit via a gyrator [(center of

Fig. 1(b)]. This is a lossless two-port network component
which connects the input and output voltagesV ≡ ðVn; VmÞT
and currents I≡ ðIn; ImÞT associated with ports n and m as
�
Vn

Vm

�
¼

�
0 −Rg

Rg 0

��
In
Im

�
; Rg ¼ β−1

ffiffiffiffi
L
C

r
; ð16Þ

where β is a dimensionless conductance. Equation (16) is
invariant under a generalized time reversal operator ~T which
performs time-inversion (t → −t) together with the trans-
formation β → −β.
In the TL the wave can be decomposed into forward and

backward components with corresponding amplitudes
Vþ
L=R and V−

L=R, respectively. Matching boundary condi-
tions at the TL-EC contact requires that

VL=R ¼ Vþ
L=R þ V−

L=R; IL=R ¼ ½Vþ
L=R − V−

L=R�=Z0; ð17Þ

where VL=R and IL=R are the voltages and currents at the left
(L) and right (R) contacts. Equations (17) assume incoming
current from the left TL and outgoing current into the right
TL. The associated reflections or transmissions are rL=R ≡
V∓
L=R=V

�
L=R and tL=R ≡ V�

R=L=V
�
L=R [see Eqs. (2)].

Application of circuit laws at the TL-EC contacts yields
the following expressions for the current and voltage
amplitudes:

i½γVL−βðV1−V2Þ�−ω½VLþκðVL−V1Þ�þ
VL

ω
¼−iηZ0IL

i½γVR−βðV1−V2Þ�þω½VRþκðVR−V2Þ�−
VR

ω
¼−iηZ0IR

i½γV1−βðVL−VRÞ�−ω½V1−κðVL−V1Þ�þ
V1

ω
¼0

i½γV2−βðVL−VRÞ�þω½V2−κðVR−V2Þ�−
V2

ω
¼0; ð18Þ

where ω is a dimensionless frequency in units of ω0. Note
that Eqs. (18) are invariant under combined P (L↔R,
1↔2) and ~T (i↔ − i, β↔ − β) reversal. The resulting M
matrix takes the form

M ¼
� ðaþ ibÞ iðc − dÞ
iðcþ dÞ ða − ibÞ

�
=A; ð19Þ

where a; b; c; d; A are polynomials in ω and their exact
form is given in the Supplemental Material [24]. One can
check that the M matrix satisfies Eq. (6).
As discussed previously, the condition detM → 0 is a

necessary (but not sufficient) condition for unidirectional
lasing. Assuming constant coupling κ, we get

detM ¼ βð1 − ω2ð1þ κÞÞ − γκω2

βð1 − ω2ð1þ κÞÞ þ γκω2

¼ 0 → β ¼ γκω2

1 − ω2ð1þ κÞ : ð20Þ
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Next we find the set of ωcr; γcr; βcr, values for which
M22ðγcr; βcr;ωcrÞ ¼ 0 and M12ðγcr; βcr;ωcrÞ ¼ 0 are
simultaneously satisfied. The latter is achieved by sub-
stituting Eq. (20) in these two relations. In Fig. 2 we plot
the evolution of complex zeros ofM22ðω; γ; β ¼ βcrÞ as the
gain and loss parameter γ increases and for a fixed value of
the magnetic field βcr. At a critical value γ ¼ γcr the first
resonance crosses the real axes at ω ¼ ωcr and a unidirec-
tional lasing is achieved.
We confirm the existence of a unidirectional lasing mode

by introducing an overall left or right outgoing coefficient
ΘL=Rðω; γ; βÞ, defined as the ratio of the left or right
outgoing field intensity to the total incident intensity:

ΘL ¼ jV−
Lj2

jVþ
L j2 þ jV−

Rj2
; ΘR ¼ jVþ

R j2
jVþ

L j2 þ jV−
Rj2

: ð21Þ

Whenever ΘL ≫ 1 (ΘR ≫ 1) while ΘR ≈ 0 (ΘL ≈ 0) a left
(right) unidirectional laser has been achieved. At ω ¼ ωcr,
the outgoing coefficient ΘðωcrÞ diverges, i.e., ΘL → ∞
(ΘR → ∞), signalling the transition to left (right) lasing
action. Typical behavior of ΘL=R near a left unidirectional
lasingmode (associated with the parameter values of Fig. 2(a)]
is shown in the inset of Fig. 2. We see that around ω ¼ ωcr,
the ΘL is very large while it diverges at ω ¼ ωcr. At the same
time, ΘR acquires a small constant valueOð10−2Þ around ωcr
while it becomes zero at ω ¼ ωcr.
The demonstration of these principles in the context of

electronics requires the implementation of the electronic
gyrator of Fig. 1(b), defined by Eq. (16). We point out that
the possibility of an ideal, passive, four-terminal gyrator in
the Kirchoff limit of electronics has not yet been realized.
Recent developments in magnetoelectric devices based on

laminates of magnetostrictive and piezoelectric materials
[25] have demonstrated promising gyrotropic coupling. For
these reasons, along with a clean comparison to the ideas
presented in this work, we implement a near-ideal gyrator
using active components discussed in detail in the
Supplemental Material [24].
Figure 3 shows experimental results for the left and right

outgoing coefficients ΘL=Rðω; γ; βÞ of Eq. (21) for a circuit
based on four LRC resonators. The two negative resistan-
ces are based on positive feedback with LM356 op-amps
[16]. Experimentally, the values used (see caption of Fig. 3)
were based primarily on the limitations of the op-amps used
for the gyrator and negative resistances, with the exact
transmission line impedance carefully adjusted to just
below the circuit instability (lasing) threshold. Under this
condition, scattering parameters used for ΘL=RðωÞ were
deduced from circuit voltages captured by a four-channel
oscilloscope. The corresponding scaled parameters for the
data shown were γ ¼ 0.23875, β ¼ 0.765, κ ¼ 0.356, and
η ¼ 0.38. Above threshold, the circuit exhibits self-
oscillatory exponential growth of the single linear mode
at ωcr, ultimately leading to complex saturation dynamics
beyond the scope of this investigation.
The proximity in parameter space to a system instability

threshold is responsible for two near-threshold modes cor-
responding to those in Fig. 2 imposed by the P ~T symmetry.
Figure 3 shows the left unidirectional mode associated with
the experimental parameters used. The asymmetric phase
inversion that characterizes the gyrator transmission com-
bined with the coupled oscillator phases is ultimately
responsible for the expression of asymmetry in the left
and right mode amplitudes shown.
We have shown that P ~T -symmetric structures combined

with gyrotropic components are capable of directionally
controlled power output. Furthermore we show that revers-
ing the gain and loss results in reconfiguring the lasing
action. An experimental demonstration of the phenomenon

FIG. 2 (color online). Evolution of resonances ω vs γ. The value
of the gyrotropic element β is fixed to be β ¼ βcr ¼ −0.50609
and the capacitive coupling is κ ¼ 0.8. The dimensionless TL
conductance is η ¼ 0.9. The unidirectional lasing frequency (red
square) is ωcr ¼ 1.05394 and it occurs at γcr ¼ 0.56919. Inset:
The overall left and right outgoing coefficientΘL=R. A divergence
of ΘL at ωcr indicates a left unidirectional lasing action. In the
same inset we also report the ratio ΘL=ΘR.

FIG. 3 (color online). Experimental results for the overall left
or right outgoing coefficient ΘL=R. A divergence of ΘL at ωcr
indicates a left unidirectional lasing action. In the same figure we
also report the ratio ΘL=ΘR. The parameters used in the experi-
ment are L ¼ 1.4 μH, C ¼ 10 nF, Cc ¼ 3 nF, R ¼ 2.7 kΩ,
Z0 ¼ 1.35 kΩ, and Rg ¼ 4.7 kΩ.
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in an electronic circuit illustrates the physics, emphasizing
the crucial role of phase-reversed coupling provided by the
gyrator. It will be interesting to implement these ideas in the
optics framework using, for example, P ~T -symmetric
structures like the ones discussed in Ref. [14]. Potential
applications of such P ~T -symmetric lasers include optical
ring gyroscopes in which a beat frequency between two
oppositely directed P ~T lasers is detected to measure the
rotation rate, optical logic elements in which the direction
of lasing in a ring is the logic state of the device, etc.

This work is partly sponsored by the Air Force Research
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tract with Alion Science and Technology and partly by the
Air Force Office of Scientific Research LRIR09RY04COR
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14-1-0037, and an NSF Grant No. ECCS-1128571.

[1] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998); C. M. Bender, Rep. Prog. Phys. 70, 947
(2007).

[2] K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904
(2008).

[3] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192
(2010); A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti,
M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).

[4] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,
D. N. Christodoulides, and Ulf Peschel, Nature (London)
488, 167 (2012).

[5] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, Nat.
Mater. 12, 108 (2013).

[6] A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009).
[7] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009); S. Longhi,

Phys. Rev. Lett. 105, 013903 (2010).
[8] M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and

T. Kottos, Phys. Rev. A 82, 010103 (2010).
[9] H. Schomerus, Phys. Rev. Lett. 104, 233601 (2010).

[10] A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, Phys. Rev. A
82, 043818 (2010).

[11] S. Longhi, Phys. Rev. A 82, 031801 (2010); Y. D. Chong,
L. Ge, and A. D. Stone, Phys. Rev. Lett. 106, 093902
(2011).

[12] H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy,
and T. Kottos, Phys. Rev. Lett. 109, 033902 (2012); H.
Ramezani, T. Kottos, V. Kovanis, and D. N. Christodoulides,
Phys. Rev. A 85, 013818 (2012).

[13] N. Lazarides and G. P. Tsironis, Phys. Rev. Lett. 110,
053901 (2013); D. Wang and A. B. Aceves, Phys. Rev. A
88, 043831 (2013).

[14] H. Ramezani, Z. Lin, S. Kalish, T. Kottos, V. Kovanis, and I.
Vitebskiy, Opt. Express 20, 26200 (2012); J. M. Lee, Z. Lin,
H. Ramezani, F. M. Ellis, V. Kovanis, I. Vitebskiy, and T.
Kottos, arXiv:1303.0774.

[15] H. Schomerus, Phil. Trans. R. Soc. A 371, 20120194
(2013).

[16] J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and
T. Kottos, J. Phys. A: Math. Theor. 45, 444029 (2012); H.
Ramezani, J. Schindler, F. M. Ellis, U. Gunther, and T.
Kottos, Phys. Rev. A 85, 062122 (2012); Z. Lin, J.
Schindler, F. M. Ellis, and T. Kottos, Phys. Rev. A 85,
050101(R) (2012).

[17] J. Cuevas, P. G. Kevrekidis, A. Saxena, and A. Khare, Phys.
Rev. A 88, 032108 (2013).

[18] N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N.
Christodoulides, F. M. Ellis, and T. Kottos, Phys. Rev. Lett.
110, 234101 (2013).

[19] C. T. West, T. Kottos, and T. Prosen, Phys. Rev. Lett. 104,
054102 (2010); C. Birchall and H. Schomerus, J. Phys. A
45, 444006 (2012).

[20] E.-M. Graefe, J. Phys. A 45, 444015 (2012); M. Hiller, T.
Kottos, and A. Ossipov, Phys. Rev. A 73, 063625
(2006); M. K. Oberthaler, R. Abfalterer, S. Bernet, J.
Schmiedmayer, and A. Zeilinger, Phys. Rev. Lett. 77,
4980 (1996).

[21] A. Mostafazadeh, J. Math. Phys. (N.Y.) 43, 205 (2002);
A. MostafazadehJ. Math. Phys. (N.Y.)43, 3944 (2002);
A. Mostafazadeh, J. Phys. A 41, 055304 (2008).

[22] C. M. Bender, M. V. Berry, A. Mandilara, J. Phys. A 35,
L467 (2002).

[23] A gyrotropic scattering unit has a scattering matrix Sg which
satisfies the fundamental symmetry relation Sgð−βÞ ¼ STg ðβÞ
[26]. Based on the relation between impedance and scattering
matrices Sg ≡ ððZ0 − ZgÞ=ðZ0 þ ZgÞÞ (Z0 is the character-
istic impedance of the ports) one can also show that
Zgð−βÞ ¼ ZT

g ðβÞ. Using the relation between the scattering
matrix elements and transfer matrix elements [see Eq. (2)] we
can show that Mgð−βÞ ¼ ½1= detMgðβÞ�MgðβÞ. Further-
more, for a cavity or system consisting of various units [see
Fig. 1(a) where there are three scattering units: Left (gain)/
center (gyrotropic)/Right (loss)] the total transfer matrixM is
the product of individual transfer matrices and thus
Mð−βÞ ¼ ML × Mgð−βÞ × MR ¼ ½1= detMðβÞ�MðβÞ.
Here it is assumed that det½ML� ¼ det½MR� ¼ 1.

[24] See SupplementalMaterial at http://link.aps.org/supplemental/
10.1103/PhysRevLett.112.253902 for (a) exact expressions of
the transfer matrix elements and (b) a discussion of gyrator
implementation.

[25] M. Li, D. Hasanyan, Y. Wang, J. Gao, J. Li, and D.
Viehland, J. Phys. D 45, 355002 (2012).

[26] P. A. Mello and N. Kumar, Quantum Transport in Meso-
scopic Systems: Complexity and Statistical Fluctuations : A
Maximum-Entropy Viewpoint, Volume 4, Mesoscopic
Physics and Nanotechnology (Oxford University Press,
New York, 2004).

PRL 112, 253902 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
27 JUNE 2014

253902-5

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nmat3495
http://dx.doi.org/10.1038/nmat3495
http://dx.doi.org/10.1103/PhysRevLett.102.220402
http://dx.doi.org/10.1103/PhysRevLett.103.123601
http://dx.doi.org/10.1103/PhysRevLett.105.013903
http://dx.doi.org/10.1103/PhysRevA.82.010103
http://dx.doi.org/10.1103/PhysRevLett.104.233601
http://dx.doi.org/10.1103/PhysRevA.82.043818
http://dx.doi.org/10.1103/PhysRevA.82.043818
http://dx.doi.org/10.1103/PhysRevA.82.031801
http://dx.doi.org/10.1103/PhysRevLett.106.093902
http://dx.doi.org/10.1103/PhysRevLett.106.093902
http://dx.doi.org/10.1103/PhysRevLett.109.033902
http://dx.doi.org/10.1103/PhysRevA.85.013818
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevA.88.043831
http://dx.doi.org/10.1103/PhysRevA.88.043831
http://dx.doi.org/10.1364/OE.20.026200
http://arXiv.org/abs/1303.0774
http://dx.doi.org/10.1098/rsta.2012.0194
http://dx.doi.org/10.1098/rsta.2012.0194
http://dx.doi.org/10.1088/1751-8113/45/44/444029
http://dx.doi.org/10.1103/PhysRevA.85.062122
http://dx.doi.org/10.1103/PhysRevA.85.050101
http://dx.doi.org/10.1103/PhysRevA.85.050101
http://dx.doi.org/10.1103/PhysRevA.88.032108
http://dx.doi.org/10.1103/PhysRevA.88.032108
http://dx.doi.org/10.1103/PhysRevLett.110.234101
http://dx.doi.org/10.1103/PhysRevLett.110.234101
http://dx.doi.org/10.1103/PhysRevLett.104.054102
http://dx.doi.org/10.1103/PhysRevLett.104.054102
http://dx.doi.org/10.1088/1751-8113/45/44/444006
http://dx.doi.org/10.1088/1751-8113/45/44/444006
http://dx.doi.org/10.1088/1751-8113/45/44/444015
http://dx.doi.org/10.1103/PhysRevA.73.063625
http://dx.doi.org/10.1103/PhysRevA.73.063625
http://dx.doi.org/10.1103/PhysRevLett.77.4980
http://dx.doi.org/10.1103/PhysRevLett.77.4980
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1088/1751-8113/41/5/055304
http://dx.doi.org/10.1088/0305-4470/35/31/101
http://dx.doi.org/10.1088/0305-4470/35/31/101
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.253902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.253902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.253902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.253902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.253902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.253902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.253902
http://dx.doi.org/10.1088/0022-3727/45/35/355002

