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Wave-packet self-imaging and giant recombinations via stable Bloch-Zener
oscillations in photonic lattices with local P77 symmetry
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We propose a family of local PT-symmetric photonic lattices with transverse refraction index gradient w,
where the emergence of stable Bloch-Zener oscillations are controlled by the interplay of @ with the degree of
non-Hermiticity y of the lattice. In the exact P7 -symmetric phase we identify a condition between w and y for
which a wave-packet self-imaging together with a cascade of splittings and giant recombinations occurs at various
propagation distances. The giant wave-packet recombination is further enhanced by introducing local impurities.
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Introduction. Non-Hermitian wave physics and specifically
its parity-time (PT") symmetric ramifications [1], has attracted
alot of attention in recent years. The main observation was that
a non-Hermitian Hamiltonian A that commutes with the joint
‘PT-symmetric operator may possess an entirely real spectrum.
Specifically it was shown that below a critical value yp7, of
the gain and loss parameter y controlling the non-Hermiticity
of H, the spectrum is real and the eigenfunctions of H are
eigenfunctions of the PT -symmetric operator. In the opposite
limit the spectrum becomes partially or completely complex
while the eigenfunctions cease to be eigenfunctions of the PT
operator. The first domain was coined the exact PT -symmetric
phase while the latter was coined the broken PT -symmetric
phase. The transition point y = ypr is characterized by an ex-
ceptional point (EP) singularity where both the eigenfunctions
and eigenvalues coalesce.

The impact of these ideas is well documented in various
physical settings ranging from matter waves [2,3] and
magnonics [4] to optics [5-18], electronics [19],
and acoustics [20]. Among the theoretical predictions [13],
and subsequent experimental realizations [8], was a new
type of Bloch oscillations which were unstable. They either
amplified or attenuated since the propagating constants at
these PT-symmetric lattices became immediately complex
(the system is at the broken PT phase) once a transverse
refraction index gradient is introduced.

Here we introduce a class of photonic lattices whose
building blocks are PT-symmetric dimers [see Fig. 1(a)],
with a transverse refractive index gradient w. These lattices
respect a local P;7 symmetry associated with each individual
dimer. Despite the lack of global PT symmetry they have
parameter domains for which their eigenvalues are real (i.e.,
exact PT phase). In this domain they support a class of
stable PT-symmetric Bloch-Zener oscillations which allow
periodic wave-packet self-imaging whenever the choices of
the w and y parameters impose a commensurability relation
between the period of Zener tunneling and the period of
Bloch oscillations. These Bloch-Zener oscillations experience
a cascade of splittings and giant beam recombinations which
are further enhanced in the presence of localized defects.

Theoretical Model. We consider the photonic lattice of
Fig. 1(a). Each waveguide supports only one propagating
mode, while light is transferred between waveguides via
evanescent tunneling. The connectivity of the array is such
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that each amplifying (dissipative) waveguide of a dimer is
coupled, with a coupling constant 4, to both of the adjacent
dimers’ dissipating (amplifying) waveguides. In addition we
assume an intradimer coupling o [21]. An experimental
implementation of the refraction index gradient has been
realized in Refs. [22,23] for one-dimensional structures and for
two-dimensional structures in Refs. [24,25]. The diffraction
dynamics of the evolving electric field amplitude W, (z) =
(a,(2),b,(2))T of the nth dimer along the propagation direction
Z, in the paraxial description, satisfies the following equation

da,

dz

A
[ + (nw —iy)a, +ab, + E(bn—l +byr1) =0,
(D

.db, . A
ld_ + (na) + ly)bn + aa, + E(an—l + an+l) = 09
Z

where a,(b,) is the field amplitude at the gain (loss) site
of the nth dimer. Although the system described by Eq. (1)
does not respect a global PT symmetry (due to the index
gradient), nevertheless there is a local P;7 symmetry that
is satisfied by each individual dimer (i.e., each dimer is PT
symmetric around its axis of symmetry) [26]. A realization
of the basic PT-symmetric unit of our structure, i.e., the PT
dimer (and how to control the gain and loss parameter y) was
demonstrated in [6].

Spectral Analysis. It is instructive to start by studying
the dispersion relation of the system in the absence of the
transverse index gradient, i.e., = 0. Using the Fourier trans-
formation a,(z) = \/;27 ffﬂ Zlq(z)e"‘i”dq [similarly for b,(z)]
Eq. (1) takes the form

i Czq(z) _ iy _vq><€lq(z)>
'z (bq<z>> = (—vq —iy )\ b,(2)) @

where v, = a + A cos(g). The dispersion relation £°(g) (lon-
gitudinal propagation constants) is obtained by calculating the
eigenvalues of the 2 x 2 matrix in Eq. (2):

E%(q) = ov/(a + Acos[q])? — ¥2, (3)

where g € (—m,m] and 0 = =+ indicates the upper/lower band.
For y = 0 the minimal spacing between the two bands § =
2(ov — A) occurs atg = £mw. As y increases, the minimal band
separation shrinks until the edges touchaty — y*7 =a — A
where an EP degeneracy occurs [see Fig. 1(b)]. For y > ypr
we enter the broken P T -symmetric phase and the eigenvalues
appear in complex conjugate pairs. Below we will focus our
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FIG. 1. (Color online) (a) Photonic lattice (for @ = 0) with P, 7
symmetry [26]. Red (blue) waveguides indicate waveguides with
amplification (attenuation) [21]. (b) Associated dispersion relation
for y = 0 (outer blue lines for upper and lower bands), 0 < y < ypr
(upper and lower red lines before the blue outer ones), y = ypr (upper
and lower black lines before the blue ones which are associated with
the EP degeneracy at ¢ = £), and the solid (dashed) green (inner)
lines are the real (imaginary) part for y > ypr.

analysis on the parameter domain for which the spectrum
is real (exact PT-symmetric phase). In this domain, the
eigenvectors |o') of the 2 x 2 matrix of Eq. (2) take the form

Y — [ e—io0/2 ] ; ' ( y) @
—_— is0/2 | = arcsin [—— ),
v2cosplL—oe or Vg

and they are also eigenvectors of the PT operator [1].

When o # 0 the two bands are replaced by two interleaving
Wannier-Stark ladders £F = £F + nw where n = 0,£1, ...
The offsets 535 determine the relative energy distance between
the two ladders and can be evaluated numerically from a
direct diagonalization of the effective Hamiltonian H that
describes the paraxial propagation of our system [Eq. (1)].
In contrast to the w = 0 case, the system possesses multiple
exceptional points.

Let us look at the case A = 0. In this case the longitudinal
propagation constants £ are organized in doublets associated
with the nth isolated dimer:

Efzé’oi—i—na), E(T::l: a? —y2, (5)

lo) =

For w > 2« the spectrum is nondegenerate for any value
of y # «a (for y = « we have multiple EP degeneracies).
However, for v = 2o we have a degeneracy at y = 0, where
&F = &T,. For ® = « another (simple) degeneracy develops
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FIG. 2. (Color online) Numerical results for (a) the first EP of
the system for o = 1, versus w and A; (b—d) The real (black) and
imaginary (blue dotted) spectra in domains 1, 2, 3 for A = 0.5 and
a=1 In (b) =25, in (c) w=1.5, and in (d) w = 0.85. (e)
Spectrum for A = 0.6 and w = 0.231 associated with the parameters
used in Fig. 3. The perpendicular solid (dashed) lines indicate the
values of y = 0.405 (y = 0.443) associated with Figs. 3(b) and 3(c).
The subfigures in (a) are plots of Egs. (5) and (6), respectively, for
the same parameters as (b) and (c). The purple lines indicate the
w,, values separating domains with different numbers of instability
regions (see text).

at y =0 where now & =&F,. At the same time the

previous degeneracy at y = 0 for w = 2o “evolves” toward
y = a‘/Tg. It is straightforward to show that for w,, = 27“
where m = 1,2,3, ..., degeneracies with more remote dimers
occur at y = 0 while the previous ones evolve toward larger
values of y. The index m, defining the number of degeneracies
for A =0, will be used below in order to delineate the
w-A parameter space of our system, Eq. (1), into broken
‘PT-symmetry (i.e., unstable) regions occurring as y increases.

In Fig. 2(a), we present a density plot for yg‘}“, associated
with the first EP, versus w and A. The purple horizontal lines
indicate the w,, values discussed previously. For each such
domain, we plot in Figs. 2(b)-2(d) a typical spectral behavior
(for fixed A,w) of the eigenenergies of the system in Eq. (1)
versus y. Thus the number of instability regions is described
approximately by the index m. Although this description is
good for A < «, for large A values a more refined analysis of
the number of instability regions is needed.

The domain m = 1 [one instability region, see Fig. 2(b)]
can be understood within the framework of a single dimer,
see Eq. (5). The latter is also plotted at the inset in Fig. 2(a).
Domain m = 2 can be analyzed using two coupled dimers

subjected to a gradient w:

)

A
0 2
A
3 0
n—Dw—iy o
o n—Dw+iy
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FIG. 3. (Color online) Propagation for an initial Gaussian wave front a,(0) = b,(0) = e~*/10 The lattice parameters are = 1, w = 0.231,
and A = 0.6. The site index n indicates the nth dimer where the amplifying site is juxtaposed with the attenuating site on the right. In the upper
subfigures, the red lines show the total power while the color maps describe the individual site power (|a,(z)|?,|b,(z)|?); the green lines mark the
first three Zener distances zz while the orange lines mark the expected self-imaging time zg; (approx. at 136). In the lower graphs the gray and
pink lines correspond to the normalized relative band-power evaluated numerically from the beam evolution (see text). The black and red dots
correspond to the upper and lower band projections [Eq. (9)], normalized to the total power at each distant z. In (a) y = 0, in (b) y = 0.405,
while in (c¢) and (d) y = 0.443. In (d) a defect is included in the seventh dimer during the propagation interval z € [z(zl) — 4,2(21) + 4] (see text
for details). The presence of the defect disrupts the expected revival at zg; [see the lower subfigure (c) where the expected zgs; (approx. at 136)
is marked with an orange line] and results in a huge total power at the recombination distance zx [third green line at upper subfigure (d)]. The
behavior of subfigures (b)—(d) is typical and has been observed over a wide range of the parameter A.

Direct diagonalization of the above Hamiltonian gives
=&y +no, & =EVX LY +lo, (©6)

where X=@EP+a> =y + (2% and Y
VA202 + (@® — y2)w?. Equation (6) is plotted in the
inset of Fig. 2(a) and it describes qualitatively the features
(i.e., two instability domains) shown in Fig. 2(c) associated
with the system in Eq. (1). Other domains m = 3,4, ... can be
explained by analyzing a system of three, four, etc., coupled
dimers. Below we will concentrate only in the parameter
space for which the system is in the exact PT-symmetric
phase (stable domains) [27].

Dynamics. To study the dynamics, we have numerically
simulated the propagation of a broad Gaussian beam for
different values of y < ypr. We have assumed a normal
incident, so that at the input plane z = 0 the beam has excited
mainly the first band in a spectral interval around go = 0.
We first consider the case of y =0 where the band gap
8 =2(x — A) is large enough to allow us to neglect Zener
tunneling (ZT). According to the acceleration theorem, the
transverse propagation constant g increases up to =m where
the wavelength satisfies the Bragg condition associated with
the underlying periodic potential. The wave is then Bragg
reflected at propagation distance z = 7 /w and travels in the
opposite transverse direction toward lower index sites where
it experiences a total internal reflection. The process repeats
itself, leading to a periodic motion which can be considered
the optical analog of Bloch oscillations. The oscillation period
can be easily estimated using the above considerations and it is
zp = 27 /w. The above qualitative picture is nicely reproduced
in Fig. 3(a) for y = 0 and w = 0.231.

As y increases, the band gap § becomes smaller and ZT
between the two bands at ¢ = £ is not negligible any more.
The associated spreading scenario is depicted in Figs. 3(b)

and 3(c) for @ = 0.231 and two different values of the gain
and loss parameter y = 0.405 and 0.443. In this case the
beam will experience a ZT at distances Z(Z") =Q2n+ /o,
where n = 0,1, .... Let us discuss in more detail the first
ZT event at z(ZO) = m/w. For distances z < zg)) the beam is
mainly trapped in the lower band and propagates along the
direction of the local gradient d£~/dq. At Z(ZO), due to the
tunneling, the beam splits into two beams one characterized
by the lower band and the other by the upper band. While
the beam associated with the lower band reverses direction
via Bragg reflection, the beam associated with the upper
band follows a parallel trajectory with 31 /dg. These two
beams will again change direction due to total internal and
Bragg reflections respectively. They recombine at the second
tunneling point at distance Z(ZD = 37 /w. The recombination
process is more complicated because now both occupied
bands experience coherent interference. We have found that
at distances zp = z(Zz) [marked by the third green line in
Fig. 3(c)] these recombinations can lead to a giant power
focus (the total power is plotted with a red line in the z
axis of all upper subfigures of Fig. 3). The superposition
of ZT with Bloch oscillations can, in general, result in an
asynchronous [28] process which destroys exact revivals of
the initial packet. Nevertheless we find that wave-packet
self-imaging is achieved for some values of w and y. This
is the case in Fig. 3(c) (distance zg; at approx. 136 indicated
by the orange line) as opposed to the results shown in Fig. 3(b)
where the self-imaging is not observed.

The dynamics is best analyzed in terms of the Floquet-
Bloch (FB) eigenvectors of the effective non-Hermitian Hamil-
tonian H that describes our system [Eq. (1)]. In Dirac’s
notation, the FB modes associated with the propagation
constant (eigenstate of H) &7 is indicated as |£7). They
constitute a biorthogonal basis and satisfy the relations
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(ETIETY = 8pumboos D g Do 1EIVET*| = 1, which
are dictated by the symmetric nature of H (* denotes complex
conjugation). It is easy to show that the FB modes in
the position representation satisfy the periodicity relation
(L +kIET ) = (w,lIET); {Im,l)} is an orthonormal basis
defined by two indexes (u,/) with the first index representing
the gain (u = 1) or loss (u = 2) waveguide while the second
one denotes the label for the dimer.

Next, we expand the initial preparation |V (0)) in the FB
basis. We have [W(0)) =Y _ Y>> ¢7|E7) where ¢] =
(E7*|W(0)). Thus the evolving beam is

00
_ o —i&%z
=2 ) e

o=+ n=—0o0

W (2))

7). (7)

We now project the evolving beam [Eq. (7)] to
the Wannier-Bloch basis |o,q) = |0) ® |¢), where |g) =
\/#27 Y I1)eid spans the quasimomentum space:

W, ,(2) = (0,q|¥(2)) = e HC (wz + q)(0,q1E )
+ e 82 CH (wz 4 g)(0,qI1E), (8)
where (0,q| = (0] ® (g], and (o| = (PT|o))" [1]. The coef-

ficients C%(wz +¢q) = Y7L, ce @+ satisfy the peri-
odicity relation C?(wz + g + 27 ) Co%(wz + q).

Equations (7) and (8) provide an explanation for the
recombination and self-imaging events. They indicate that
the evolving beam is, in general, not periodic as a function
of the propagation distance z and it is characterized by two
propagation scales: The first one is the Bloch period, z5 = %’
originating from the periodicity of the C? functions. The
second scale zp = gf”g, is associated with the minimal
energy spacing in between the two Wannier-Stark ladders and
arises from the nontrivial relative phase on the right-hand side
of Eq. (8). There are w and y values for which these two scales
are rationally related to one another, i.e., zg/zp = N/M. This
condition leads to a self-imaging of the initial beam at distances
zs1i = Mzrp = Nzp. For instance, when M = 1,N =5 the
initial wave packet is reconstructed at the distance zs; = 10w
[orange line in Fig. 3(c)]. Moreover, a giant power focus
(third green line) occurs at the recombination distance which
is between two successive self-imaging events.

A deeper insight of the recombination events is achieved by
evaluating the relative band projections P?(z) of the evolving

)
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beam. Using Eq. (8) we get

P°(z)
P=(2)+ Pt(z)’
The band projections are plotted on the lower row of Fig. 3 as
red (lower band) and black (upper band) points. In the same
figures the pink and grey lines correspond to the relative power
[normalized PR(z) + PX(z) = 1] evaluated numerically as the
power at the left and right sites of the recombination point,
dimer index n = 7. The numerical results strongly correlate
with the band projections Eq. (9) where the pink (left) and
grey (right) lines correspond to the lower and upper bands
respectively. The distances where jumps occur coincide with
the position z = z( ") where Zener interband transitions of
power occur according to the semiclassical picture of splittings
and recombinations discussed earlier (see green lines).

We have also studied the effect of a defect in the creation
of these intense recombination points. In general, a defect will
devalue the maximum of the total power; however, a strategi-
cally placed defect at one of the recombination distances z( »
can lead to further enhancement of the power peak. This is
reported in Fig. 3(d), where the real part of the refraction
index of the n =7 dimer, where the first recombination
at distance 7 = z(zl) = m/w occurs [see Fig. 3(c)], has been
altered, i.e., nw — nw + 0.25 (where n = 7). This alteration
occurred during the propagation distance Az = zg) 4 4 from
the origin. We interpret this phenomenon as resulting from
quasimomentum randomization due to the scattering
from the defect prior to the giant recombination. This leads
to recombinations with all power concentrated in a narrow
spatial domain.

Conclusion. We have investigated stable Bloch-Zener os-
cillations in a photonic lattice with local PT symmetry. We
have found that an initial beam experiences a cascade of beam
splittings and recombinations where the reconcentrated power
can exceed the initial value due to the non-Hermitian nature
of the dynamics. At the same time we have found that a
judicial selection of the index gradient @ and the gain and
loss parameter y can result in perfect self-imaging of the
initial packet at distances dictated by these two parameters.
This platform can open up new possibilities for the realization
of reconfigurable beam splitters, interferometers, and imaging
processing.
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