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Abstract
We investigate the transport characteristics of a four-port gyrotropic photonic structurewith
mirror-time reversal symmetry. The structure consists of two coupled cavities with balanced
amplification and attenuation. The cavities are placed on top of a gyrotropic substrate and are
coupled to two buswaveguides. Using detail simulations in themicrowave domainwe demonstrate a
strong non-reciprocal intra-guide port transport and an enhanced inter-guide port transmittance.
The non-reciprocal features are dramatically amplified in the gain–loss parameter domainwhere an
exceptional point degeneracy, for the associated isolated set-up, occurs. These results are explained
theoretically in terms of an equivalent lumped circuit.

1. Introduction

Synthetic photonic structures with anti-linear symmetries have attracted a lot of attention during the lastfive
years [1–20]. Due to the presence of appropriately tailored amplification and attenuation elements, they are
described by non-Hermitianmathematicalmodels which violate the time reversal symmetry  . Nevertheless,
these systems respect a join antilinear symmetry  , where  represents some linear operator associatedwith a
spatial symmetry (e.g. parity,π-rotations,mirror symmetry etc). Typically the associatedmathematicalmodels
also violate the  -symmetry. Themost prominent category are parity-time ( ) symmetric systems, where the
linear operator  is associatedwith the parity. The invariance under  -symmetry imposes certain constrains
on the spatial arrangement of the gain and loss elements. Specifically the index of refraction of a  -symmetric
photonic systemmust satisfy the condition *= -n r n r( ) ( ) [1, 2]. An obviousmotivation for the investigation
of  -symmetric structures is that they provide an excellent playground to study the effects of symmetries (and
their violation) in a controllable laboratory environment [2–7]. Butmost importantly, it turned out that these
systems can open new technological avenues for themanipulation of electromagnetic signals. Thus, phenomena
like asymmetric transport [5, 6, 12–14], unidirectional invisibility [3, 4, 8], non-reciprocal Bloch oscillations
[9, 10], control of lasingmodes [6, 7], CPA-lasers [15, 21], lasing suppression via gain [17–19], unidirectional
lasers [20] and hypersensitive sensors [22] are some of the new technological features associatedwith these type
of structures.

Given the above success of  -symmetric photonic structures it is natural to extend the investigation into
themore general family of  -symmetric systems. Of special interest is the case wheremagneto-optical effects,
associatedwith a vector potential which cannot be gauged away, are involved [14, 20, 23, 24]. In this case the
notion of time-reversal symmetry has to be adopted accordingly, i.e. it is not only associatedwith a simple
conjugation  -i i but it also involves a change in the direction of the vector potential. Themotivation to
investigate this type of photonic structure is associatedwith the possibility to induce giant non-reciprocal effects
—a theme of ongoing intense investigation [25–28]. Traditionally ferritematerials such as yttrium–iron garnet
(YIG) are invoked in the design of photonic (both in themicrowave and optical)non-reciprocal devices. The
degree of non-reciprocity in any particular application is always a trade-off between the strength of the
gyromagnetic coupling, losses associatedwith spin-wave relaxation, and the geometry of thewave-ferrite
interaction.
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In this paperwe analyze the transport characteristics of a four-port photonic structure with anti-linear
mirror-time reversal ( ) symmetries in the presence ofmagneto-optical effects. The structure consists of
two -symmetric cavities on a YIG substrate shown infigure 1. The cavities are coupled to two bus
waveguides.We show that thewhole structure possesses strong non-reciprocal behavior between left and right
ports associatedwith the samewaveguide (intra-guide ports)while it demonstrates an enhanced transmittivity,
due to the active elements, between cross-ports of the two different waveguides (inter-guide ports). This
behavior is strongly enhanced in the parameter domainwhere exceptional point (EP) degeneracies of the
underlying isolated resonators occurs. The results are numerically demonstrated in themicrowave domain and
are accompanied by a thorough analytical study of a lumped circuit equivalent.

The organization of the paper is as follows. In the next section 2we introduce themicrowave photonic
structure. A numerical analysis of the eigenmodes is reported in section 2.1while in section 2.2we report our
numerical results for the transport properties of this system. In section 3we present the lumped circuit analog
and theoretically analyze its transport characteristics. Specifically in section 3.1, we present a general
introduction to the lumped elements of an symmetric system and their equivalence with themicrowave
components. In section 3.2we present the lumped analog of the four-portmicrowave photonic structure. First
we analyze the eigenmodes of the isolated set-up in section 3.3. In section 3.4we analyze the properties of the
scatteringmatrix of this system. Finally section 3.5 discuss the scattering properties of this system and
demonstrate the universal nature of the non-reciprocal intra-guide transport in such set-ups. Our conclusions
are given at the last section 4.

2.Microwave photonic structure

Themicrowave photonic structure that we consider, shown infigure 1, is theminimal four-portmicrostrip
configuration capable of demonstrating symmetric nonreciprocity. It consists of two transmission lines,
each connected to a left and right port. A pair of proximity coupled half-wave resonators, refered to as the dimer,
bridge the space between thewaveguides. Small gaps end couple the dimer to each of the transmission lines,
leading to a coupling between the two transmission line buses dominated by the dimer resonator. All of the
microsrtip structures lay on the top of a 8.75 mm thick YIG substrate, with relative permittivity  = 15r [29],
and a ground plane below. The resonator dimer and the transmissionwaveguide traces aremodeled in the thin,
perfect conducting limit. The length of themicrostrip resonators are chosen to be =l 24.5 mm long,
supporting half-wavelength resonances of approximately w p =2 1.24 GHz. The distance between the two
microstrip resonators is d=20 mmwhich correspond to a phase delay º =d kd 2.36 rad˜ . Later on in
section 3.5we discuss the role of the phase delay in our construction. Themicrostrip ends are separated by a
0.5 mmgap from the sides of the two 3 mmwide transmission lines.

The YIG-substrate is divided into two types: (i) active domains in the regions just underneath the two
microstrip resonators, and (ii) a passive domain elsewhere (see figure 1). A balanced gain and loss is introduced
in the two active regions by adding opposite imaginary parts to the YIG permittivity,  ag= ´ 15 1 ir ( ), to
each resonator of the dimer.Here, γ is a parameter designating the strength of the balanced gain or loss defined
so that each resonator, if isolated, would experience exponential growth or decaywith g w w= 2 Im Re∣ ( ) ( )∣.
The parameterα is a numerically determined factor of (order unity for the configuration offigure 1) accounting
for the precise geometrical configuration of themodified permittivity. Furthermore, the YIG-substrate is
magnetizedwith aDCbiasfieldH0 along the y-axis, parallel to the resonatormicrostrips. Themagnetic

Figure 1. Schematic representation of a half-wavelengthmicrostrip dimer structure side-coupled at the two endswith two
transmissionwaveguides equally spaced from the dimerwhich are placed on top of a YIG-substrate. Gain and loss are locally applied
in a uniformly distributedmanner in the spatial domains underneath the twohalf-wavelengthmicrostrip resonators. A staticmagnetic
bias ofH0magnetizes the substrate (excluding the region underneath the two transmissionwaveguides) in the y-direction.
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permeabilitymatrix m̂ that describes the YIG takes the form:
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where w0 = m g0 e H0 and wm = m g0 e Ms, andwe have neglected loss.Here, w0 corresponds to the precession
frequency of an electron in the externally appliedmagnetic biasH0 of 1600Oe, and wm denotes the electron
Larmor frequency at the saturationmagnetization,Ms= p

1750

4
Gof the ferritemediumwith gyromagnetic

constant ge = 1.76×1011 rad sT−1. Additionally, m0 andω represent the permeability of free space and angular
frequency of the radiation.

The structure shown infigure 1 respects an antilinearmirror-time reversal symmetry as is demonstrated in
figure 2. The linearmirror-symmetry operatorperforms a reflection  -x y z x y z, , , ,( ) ( )with respect to
themirror yz-plane at x=0 and reverses the direction of themagnetic field  -

 
H H0 0. The antilinear time-

reversal operator  , performs a complex conjugation i  −i togetherwith an inversion of the direction of the
magnetic vectors i.e.  -

 
H H0 0. In the specific case of gain and loss elements the complex conjugation

operation is equivalent to the exchange of the gain and loss elements.

2.1. Eigenmode analysis of the isolated system
We start our analysis with the parametric evolution of the eigenfrequencies of the isolated dimer associatedwith
the photonic set-up offigure 1.

A novel feature of non-Hermitian systemswith antilinear symmetries, is the possibility to possess an entirely
real spectrum for some values of the gain/loss parameter γ [30]. In this parameter domain, coined exact phase,
the eigenmodes are invariant under the antilinear operator. As the gain/loss parameter γ, increases beyond some
critical value g g> , the spectrumbecomes partially or completely complex and the system enters the so-
called broken phase. In this domain the eigenmodes do not respect the antilinear symmetry—although the
system itself remains invariant under . At g g= the eigenfrequencies and the associated eigenmodes
coalesce and the system experiences an EP degeneracy.

We investigate the -symmetry phase transition for the set-up offigure 1with the buswaveguides
removed (see insets offigure 3).We refer to this as the isolated configuration. Using the 3D-finite element
electromagnetic (FEEM) eigenfrequency simulation package of COMSOL [31]we explore the -symmetry
phase transition for three scenarios associatedwith the distribution of the gain and lossmedia (themodified
permittivity) beneath themicrostrips: (i) the gain and loss are collapsed into a localized patch at the resonator
ends, as shown schematically in the inset offigure 3(a); (ii) the gain and loss is uniformly distributed over the left
and right sides of thewhole YIG-substrate, as shown infigure 3(b); and; (iii)finally, the case originally described

Figure 2.The set-up offigure 1 respects amirror-time reversal symmetry. Themirror symmetry is definedwith respect to
the yz-plane at x=0.
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infigure 1where the gain and loss is confined directly beneath the individual resonator striplines is reported in
figure 3(c).

The purpose of the analysis of these isolated system scenarios is to demonstrate that the -symmetric
behavior is onlyweakly dependent on the details of how the gain and loss is actually achieved.While the latter
two scenarios could be realized in the optics framework by appropriately distributed gain and lossmedia, case (i)
ismore relevant to themicrowave domain. Concentrating the gain and loss into a small patch at the anti-nodes
of the half-wave electric potential oscillations in themicrostrip resonatormimics the action of descrete
electronic gain or loss elements such as transistors or resistors [21, 32]. In all cases, the geometric parameterα is
calibrated to preserve the statedmeaning of the gain/loss parameter γ.

Figure 3 illustrates the parametric evolution of the isolated eigenfrequencies as a function of the gain/loss
parameter.When g = 0, the coupledmicrostrip resonators support two low order resonantmodes: a
symmetric (low frequency) and an antisymmetric (higher frequency)modes defined by the parallel and anti-
parallel directionalflowof the surface currents in the srtiplines. For g = 0 the associated eigenfrequencies have
a small and similar imaginary value due to aweak radiative loss to the simulation boundaries. As γ increases the
real part of the eigenfrequencies of themodes changes (seefigures 3(a)–(c))while the associated imaginary part
remains the same. At some critical value of the gain/loss parameter g g= , the eigenvalues coalesce and a
spontaneous -symmetric phase transition occurs. For g g> the real part of the eigenfrequencies
remains degenerate while their imaginary part bifurcates to two distinct values of opposite sign. The eigenmodes
take on a left/rightflavorwith the gain side exponentially growing in time, and the loss side exponentially
decaying in time. Themain results in this figure show that the quantitative behavior of the three set-ups (i)–(iii)
is the same and does not depend on the details of how gain and loss are introduced into the system. For the
remainder of the simulations of the non-isolated system, wewill restrict analysis to the case (iii), where gain and
loss are confined to be below the individual resonatormicrostrips.

2.2. Transport properties
Nextwe turn to the analysis of the transport characteristics of the four-port systemoffigure 1. The structure is
simulatedwithCOMSOL’s 3D FEEMnumerical software. Amesh density with element size ofλ/8within the
active domains underneath the twomicrostrips andλ/4 in the surrounding bulk YIG-substrate was used, and
confirmed for accuracy, whereλ is thewavelength inside themedium.Quasi-TEMwaves are introduced or
collected from the device transmission lines via impedance-matched ports, supplied through theCOMSOL
software, defined between the edge of themicrostrip waveguide and ground plane. An example of the frequency
dependence of the scatteringmatrix elements is shown infigure 4 for three values of the gain and loss parameter
γ. For intermediate values of γwe observe a strong non-reciprocal effect for intra-guide transmittancewhile the
inter-guide transmittance is enhanced. A density plot of the propagating electromagnetic field for the value of γ
where this effect is observed, is reported infigure 5. Belowwe further analyze this behavior2.

Numerical simulationswere carried out to quantify the dependence of the scattering coefficients between
various ports as a function of increasing gain–loss parameter.We report only the transmitted signals with
incident wave entering the structure fromport R1 and/or port L1. All other transmitted coefficients (and also
reflections to the incident ports) are relatedwith the reported transmittances via symmetry considerations, see
section 3.4. For example = T TL R L R1 2 2 1

etc. An impressive conclusion of our analysis is the fact that for some

Figure 3.Parametric phase transition of the eigenmodeswith increased γ, obtained using 3D-FEEMeigenmode solver package [31].
The balanced loss and gain are introduced in a localized (a) and distributedmanner (b). In (c)wepresent the results for the
configuration offigure 1. In (a) g = 1.6741; in (b) g = 0.095 and in (c) g = 0.26.

2
We restrict all of the following discussion in the frequency regime near the symmetricmodewhere the transmission ofwaves through the

system shows amaximumnon-reciprocity.
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critical value of the gain–loss parameter (γ= 0.13601) a giant isolation of the L1 port from the signal transmitted
from the R1 port is achieved (i.e. ~ -T 90 dBR L1 1

or essentially zero)while at the same timewe have a healthy
signal that is radiated towards the L2 port ( ~ -T 0.2 dBR L1 2

). The signal transmitted fromport L1 to port R2, is
~ -T 0.2 dBsL R1 2

while we have also a healthy signal fromL1 to L2 ports, ~T 7 dBsL L1 2
.We finally note that a

non-reciprocal intra-guide behavior can occur for another value of g = 0.15. However the phenomenon here is
not as dramatic as previously. Belowwe proceedwith a qualitative explanation of this strong intra-guide non-
reciprocal effect, while in sections 3.4 and 3.5we provide a detail theoretical explanation based on equivalences
with a lumped circuit.

The nonreciprocity shown in figure 6 has it’s roots in the different propagation constant for circularly
polarizedwaves travelling parallel to a staticmagnetic field exhibited in an otherwise isotropicmagnetic
medium. The question here is how can this difference be used to achieve a nonreciprocal transmission, and
underwhich conditions the - symmetry enhance the isolation? A classic ferrite-based nonreciprocal device
needs to (1) create a circular polarization containingmagnetic fields rotating perpendicular to the static bias
magnetic field, and (2) allow separate components of the chiral wave to travel along paths that interfere upon
recombination. The rotating field components couple differently to the spin precession of themagnetized
ferrite, and experience a resulting phase difference. The structure of this four port device includes all of these
features in its design.

Although there is not any obvious circular polarization, the symmetric and antisymmetricmodes of the
resonator dimer allow the equivalent to occur. Quasi-TEMwaves on a singlemicrostrip have only one
polarization defined by the singlemode, but a pair of parallel striplines, having two components, can result in
two independentmagnetic fields. Thesewavefields, perpendicular to the staticfield, also include components
perpendicular to each other, the necessary condition for the gyromagnetic coupling. The symmetricmode, with

Figure 4.Typical behavior of various scatteringmatrix elements of the set-up offigure 1 for three values of the gain and loss parameter
γ: (a) g = 0; (b) g = 0.136; and g = 0.15. In all cases the value of the gain and loss parameter is smaller than the EPof the
corresponding closed system.Other scatteringmatrix elements are related to the reported ones via symmetry considerations—see
section 3.4—and therefore are not reported here.

Figure 5.Density plot of the field intensity for incident waves entering the structure from: (a) port L2 and; (b) port R1. The field
distributionwhen γ= 0.136, for the casewhere the incident wave enters the structure fromport L1 ismirror symmetric to the results
of (a). Similarly thefield distribution for the case where the incident wave enters the structure fromport R2 ismirror symmetric to the
results of (b).
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parallel stripline currents, is dominated by amutual substratemagnetic field parallel to the plane of the substrate.
The antisymmetricmode, with anti-parallel currents, is dominated by amutual substratemagnetic field
perpendicular to the plane of the substrate. Figure 7 schematically illustrates the application of the right-hand-
rule to the region of the substrate significantly influenced by the current-induced fields of bothmodes.

The rotating field requirement imposes further conditions on the resonances. Thefields offigure 7 need to
be excited simultaneously. Normally this would be difficult to achieve since the twomodes are split by non-
gyrotropic coupling.However, the symmetry of the transmission line coupling helps in this respect. Depending
on the path delay of the resonator coupling to the transmission lines, resonantmode and the off-resonantmode
can have different effective coupling strengths to thewave excitation in thewaveguide. For example, the
resonantmode could beweakly coupled, and the off-resonantmode could be strongly coupled, resulting in a
more balanced excitation of bothmodes by the same frequency. Another rotating field requirement is that there
be a quadrature phase difference between the twomodes offigure 7.Without dissipation, symmetry of the
structure prevents such a phase delay: the resonances are either in-phase, or out of phase, with the effective drive.
However, a resonant quadrature phase relationshipwill be introduced by any small dissipation, usually naturally
occurring, that assures some finite bandwidthwhile passing through the quadrature condition. The second

Figure 6. Scattering parameter analysis of the four port structure configuration shown in figure 1 depicting the effect of increasing the
gain–loss parameter achieved by varying the imaginary part of the dielectric permittivity in the active substrate domains lying
underneath the twomicrocstrip resonators, on the signal transmitted (a) from the L1 port and (b) from theR1 port, to all other ports.
Other scatteringmatrix coefficients, describing transport fromother ports are not presented here since they are connected via
symmetry relations with the reported scattering coefficients—see section 3.4.

Figure 7. Schematic illustration of the application of the right-hand-rule to obtain themutually significant substratemagnetic field
produced by parallel (top) and anti-parallel (bottom) stripline currents of the symmetric and antisymmetricmodes, respectively. The
solid arrow shows the dominant component,mutually perpendicular to the appliedDC field and parallel to the currents, both into the
plane of the figure. These components are responsible for the gyrotropic coupling of the stripline resonatormodes.
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non-reciprocity requirement that there is a path-length difference, is available through both the phase delay
associatedwith the spatial separation of the end coupling to the resonator elements, and as an inherent ‘dwell
time’ of a resonator.

It is now clear why the non-reciprocity could be enhanced by the symmetric behavior. As the gain/loss
parameter γ progresses toward the EP, g , both the frequencies of themodes and their phases coalesce. The
novel eigenfrequency and eigenmode behavior present in these systems introduces a newparameter distinctly
capable of tuning the device in unusual ways to enable the gyrotropic coupling.

The next section discusses these features in the context of the simpler lumped-elementmodel containing
only the essential parameters.

3. Lumped circuitry analog

3.1. Lumped elements
The configuration simulated in section 2 consisted of the active, gyromagnetically coupledmicrostrip dimer
coupled to the twomicrostrip transmission linesmaking up the ports. As simple as this system is, the subtlety of
the physical coupling between themicrostrip elements and themode structure of the coupled resonators
required theCOMSOL analysis for an accurate prediction of the device behavior. Amore intuitive approach that
naturally leads to a theoretical analysis is the lumped element electronic analog.Here, the resonator pair with its
inter-resonator coupling and gain/loss character are replaced by appropriately coupled LC circuits. All spatial
symmetry considerations,with the exception of the phase delay associatedwith themicrostrip sections between
the resonator ends, can be reduced to amatter of network topology defined through the application of Kirchoffʼs
laws to fundamental electronic elements. Physical symmetry is reduced to the circuit network as defined by its
node topologywith appropriately valued connecting elements. The parity,mirror, and time reversal operations
are equivalent to the interchange of labels corresponding to pairwise associated circuit nodes, with proper
consideration of the resistive and gyrotropic elements through a sign change.

Resistors change their sign upon time-reversal, where negative resistance represents the simplest conceptual
inclusion of amplification into electronics. Dissipative loss turns into gain andKirchoff’s laws can be used
withoutmodification subject to a condition described below. Experimentally, negative resistance can easily be
implementedwith negative impedance converters but can only approximate the ideal due to inherent
limitations of the required amplifying components [21].

Analysis of circuits including negative resistance elements, however, requires respecting a subtle condition:
any two terminal circuit structure reducing to a pure negative resistancewill be undefined unless the structure is
placed in parallel with a capacitance. This conclusion results from the divergence of the pole associatedwith
parallelRCp combinations (with <R 0) in the limit of C 0p . The pole with the usual positive resistance has a
sign that corresponds to exponential decay and therefore has a physically valid limit as C 0p . For example, the
solution for the standard series LRC circuit, though it appears to have amathematically appropriate solution for
negativeR, is non-physical in that realm: the hidden pole corresponds to an exponentially growing solutionwith
a diverging rate as C 0p . The parallel LRC configurationwith >R 0 is not subject to this oversight.

The gyrotropic nature of the biasedmagnetic substrate beneath themicrostrip resonator dimer is included
electronically by the gyrator, shown schematically infigure 8 and defined by its conductancematrix, withG0

being the strength of the gyration

⎛
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Although as an actual device, the ideal gyrator can only be approximately implemented in themicrowave
regime, we nevertheless include it for its conceptual simplicity in allowing a lumpedmodel for the substrate
mediated interaction. Themirror operation applied to this device changes the sign ofG0.

Thus, for a -symmetric circuit incorporating these basic elements, it is necessary that (1) all reactive
elements either have representation in parity-associated network pairs, or directly connect parity inverted
network nodes, (2) all Ohmic elements are pairedwith opposite sign, and (3) each negativeOhmic element has
an associated parallel capacitance, or AC equivalent, as part of the circuit. Valid -circuits of arbitrary
complexity can be built up using these simple rules, though their stability needs to be independently determined.

3.2. Electronic analog circuit
Figure 9(a) shows the -symmetric lumped element circuit used to simplify the four-portmicrostrip device
simulated inCOMSOL. Themicrostrip resonator pair is replaced by a pair of LC resonators, with the left side
experiencing a gain, and the right side experiencing a loss of equivalentmagnitude represented as respective
negative and positive parallel resistances ofmagnitudeR. The originalmicrostrip resonators experience both
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capacitive and inductive coupling due to their proximity, and a gyration component arising from the biased
magnetic substrate. The lumped element resonator coupling is limited tomutual inductance, which captures the
propermode splitting of the quasi-TEMproximity coupling, and a pure gyration component.

The resonators are capacitively coupled byCc to points along an ideal TEM transmission line, separated by a
length d. The transmission lineswith impedanceZ0 are then continued on to the device ports, which in this
lumpedmodel, are collapsed to the respective nodes offigure 9. Realistic values for the lumped components can
be chosen tomatch the observed resonances of the COMSOL simulation.

Thismodel, with the resonator section limited to the four parallel nodes of the LC resonator pair, provides
for a convenient separation of the complete dimer into a generic conductancematrix,Gdimer, as illustrated in
figure 9(b). This separation not only simplifies the expression of Kirchhoff’s laws for the complete system, but
also simplifies the analysis of the isolated dimer described by the solutions of =G V 0dimer with
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m m
m m

w m
= +

-
+

-
-

-
+

-
G

Z L
G

1 0
0 1 0

0 i 1
0 1
1 0

, 3dimer
reac

1

R

1

R

2

2

2 0
1

2

( ) ( )( ) ( )
( )

where
⎛
⎝⎜

⎞
⎠⎟=V

V

V
g

l
with the entriesVg andVl denoting the voltage across the gain side and the loss side of the

dimer, as illustrated infigure 9. In thefirst term of equation (3), w w w= +- -Z C Li ireac
1 1( ) ( ) is the conductance

of the individual parallel LC resonators, while the second term gives the negative and positive conductances
associatedwith gain and loss sides, which in generalmight not be exactly balanced. The third and fourth terms

Figure 8. Ideal gyrator showing the current and voltage definitions for its conductancematrix, equation (2).

Figure 9.Equivalent electronic circuit. The full circuit shown in (a) reduces the stripline resonators to a lumped equivalentRLC pair
withmutual coupling that includes both inductive and gyrotropic components. The transmission line coupling is reduced to single
capacitances spaced at d along the ideal TEM transmission lines. The isolated resonator pair is then further reduced to its equivalent
conductancematrix,Gdimer, shown in (b).
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express strength of the inter-resonator coupling, given as the equivalent conductances associatedwithmutual-
inductance m=M L and the gyration, respectively.

Kirchoff’s laws for the dimer including only thismutual inductance and gyration coupling between the
oscillators are simplified by scaling the frequency and conductance by the bare LCnatural frequency
w = LC10 , givingDV= 0with

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

g w
iw m
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1 1

1

1

1

, 4
2 2

2 2

0 2

˜
˜ ( ) ˜ ( )

˜ ( )
˜

˜ ( )

( )

where the scaled conductance matrix D has been separated into an MT symmetric part with balanced gain/

loss parameter γ and a small unbalanced intrinsic loss g0 satisfying g g- = - L

C0
1

R1
and g g+ =0

L

C

1

R2
. The scaled gyrator strength is =g G L

C0 , the scaled frequency is w w w= 0˜ , and I2 is the

identity matrix.

3.3. Eigenmode analysis
First we discuss the normalmodes of the isolated balanced dimer by setting g = 00 . The structure of that part of
equation (4) implies relatively simple forms for the eigenvalues and eigenvectors. Respecting this structure
indeed leads to a tractable form for the eigenvalue equation

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟w

m
w

m
g w-
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+
- - =g

1

1

1

1
0 52 2 2 2 2˜ ˜ ( ) ˜ ( )

with eigenvalues of the antisymmetric and symmetricmodes

w g
g g g g

=
-  -

2
6a s

0 c
2 2

MT
2 2

˜ ( ) ( )

alongwith their redundant negatives, which are defined in terms of two critical points for the gain/loss
parameter, i e. ., the symmetry breaking point

⎡
⎣⎢

⎤
⎦⎥g

m m
= +

+
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-
g
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1

1

1
7MT

2

2

( )

and an upper critical point
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+
+

-
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1

1

1

1
. 8c

2

2

( )

Note that the given forms explicitly show all of the relationships among the analogous EPs and the real and
imaginary parts of the frequencies. The exact phase below the symmetry breaking point, g g< <0 MT, is
characterized by two purely real eigenfrequencies, while in the broken phase between this and the upper critical
point, g g g< <MT c there is one real frequencywith two opposite imaginary parts, and above gc, four pure
imaginary frequencies. The opposite imaginary parts impose at least one exponentially growingmode above
gMT making the isolated dimer unstable and inappropriate for consideration of steady-state behavior.

The normalmodes in the exact phase are characterized by equalmagnitudes for the voltage oscillations in
the gain and loss sides, which are given by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟f=

V

V

1

2

1
exp i 9

a s
a s
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( ) ( )

with a phase fa s of the loss side relative to the gain side of

⎛
⎝⎜

⎛
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⎞
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⎛
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+ garg
1

1
i

1
i . 10a s a s a s a s2

0 2 0
2

0( ˜ ) ˜ ˜ ( )

As the gain/loss parameter traverses the exact region,  g g0 MT, the phase progresses from the in- and
out-of-phase configuration of aHamiltonian coupled oscillator pair, to amode coalescence at gMT with a real

frequency w w m= = - -1a s
0 0 2 1 4˜ ˜ ( ) , where both themagnitudes and phases of the voltage oscillations are

identical. The role of the gyration strength g is subtle: it acts in an orthogonal sense to themutual inductance
coupling because of its inherent non-reciprocal coupling of current and voltage, and results inmode phasers
initially related by p 2 usually indicative of dissipation.However, in spite of the gyration being characterized by
a real conductance, it is actually a non-dissipative element. Figure 10 schematically illustrates the evolution of
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the left and right voltagemode phasers for puremutual inductance coupling in (a); pure gyration coupling in (b);
and a combination of the two in (c). In all cases, the high and lowmode coalesce as γ increases,
approaching g .

We note that the gyration is thus imposing a normalmode character to the electronic circuit analogous to the
circularly polarized eigenstates of free electromagnetic waves in the gyromagneticmediumof the device
substrate. The combination of the gyrotropic couplingwith normal reactive coupling allow the simple electronic
circuit to embody all of the important features of themore nuancedmicrostrip dimer.

Nowwe impose the small unbalanced intrinsic loss, g0 of equation (4), into the system to generically account
for losses in any real system. Specifically, up to gO 0( ), the eigenfrequencies of the isolated symmetric and
antisymmetricmodes pick up nearly equal imaginary parts

w w h g= + ı , 11s s s
0

0˜ ˜ ( )

w w h g= + ı , 12a a a
0

0˜ ˜ ( )

h h h
h h

» » º
+

=
2

1

2
.s a

s a¯

The closed system consisting of the nearly -symmetric couples oscillators has nowbeenmodified by the
parameter g0 to include a small unbalanced intrinsic loss common to both the symmetric and antisymmetric
modes.

3.4. Scattering set-up
The full device circuit can nowbe considered by expressing the transmission lines, characterized by their
impedanceZ0 and phase velocity vp, as capacitively coupled to the circuit defined by the conductancematrix
Gdimer, illustrated earlier infigure 9(b) and explicitly expressed in equation (4). The scaled coupling
capacitances, =c C

C
c are spaced at a scaled distance =d d

v LCp

˜ along the respective transmission lines. Kirchoff’s

laws can nowbe rewritten in the framework of coupled-mode theory, expressing relations among the port wave
components required tomatch the conductance terminal currents ofGdimer

⎜ ⎟⎛
⎝

⎞
⎠z + = -LD C V C L V V

1

2
, 13m m0 1

in
2
in( ) ( )

z= - +V LD PVV , 141
out

0 1
in ( )

z= +V LD PVV . 152
out

0 2
in ( )

Here = +
w z

--
C Im

L

ı c 2

11

0
( )˜

, = +L P I1

2 2( ) and
⎡
⎣⎢

⎤
⎦⎥=

w

w

-

-
P 0 e

e 0

ı d

ı d

˜ ˜

˜ ˜ are 2×2matrices resulting from the

reduction of Kircchoff’s lawswith z = Z C

L0 0 . The incoming and outgoing port wave components for the

upper transmission line (#1 offigure 9),
⎛
⎝⎜

⎞
⎠⎟=

+

-V
V
V1

in L1

R1

and
⎛
⎝⎜

⎞
⎠⎟=

-

+V
V

V1
out L1

R1

respectively, consist of forward (+)

and backward (−) travelingwave voltage amplitudes at the left (L1) andright (R1) ports, which for this lumped

Figure 10. Loss side voltage phasors relative to the gain side (+x-axis) for the low frequency (solid) and high frequency (dashed)
isolated dimermodes. Phasors in (a) are for puremutual inductance coupling; (b) is for pure gyration coupling; and (c)mixed
coupling. In all cases, the high and lowmodes coalesce to identical relations as γ approaches gMT.

10

New J. Phys. 18 (2016) 075010 HLi et al



model are shortened to the connection nodes. Similarly,
⎛
⎝⎜

⎞
⎠⎟=
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V2

in L2
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and
⎛
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refer to the

corresponding components for the lower transmission line (#2 offigure 9).
Using the coupled-mode equations (13)–(15), one can get the relations between the outgoing signals and

incoming signals, which defines a 4×4 scatteringmatrix Swith block elements
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Furthermore, using equation (16) togetherwith the definition of the P-matrix we can show that
=S n n S n n, ,m m m m,

oi 2
,

oi 2∣ ( )∣ ∣ ( )∣¯ wherem, n=1, 2 and d= -m m m,2¯ .We note that this relation connects the

reflectance S n n,m m,
oi 2∣ ( )∣ at a specific port to one of the transmittances to another port S n n,m m,

oi 2∣ ( )∣¯ . In the
special case where intrinsic losses are absent, i.e. g = 00 , it is easy to show from the above equations that the
scatteringmatrix S satisfies the following symmetry relation:
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, 20x
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where  is the time reversal symmetry operator as it was defined previously in the presence ofmagnetic elements
and is themirror symmetry operator. The operator Q̂ involved in the definition of themirror symmetry
reverses the direction of themagnetic field  -

 
H H0 0 while sx is the Paulimatrix.

Transmission and reflection coefficients are extracted from the elements S m n, ,i j,
oi ( ) where i= 1, 2 and j= 1,

2 designate the top (1) or bottom (2) transmission lines, andm= 1, 2 and n= 1, 2 designate the left (1) or right
(2) ports. For example, the reflection coefficient from the right port of the bottom transmission linewould be
 = S 2,2R 22

oi 2
2

∣ ( )∣ and the transmission from that port to the left port of the top transmission linewould

be  = S 1,2R L 12
oi 2

2 1
∣ ( )∣ .

To quantify the isolation effect for the signal between any pair of ports we introduce an associated
nonreciprocity parameter, NR,measured in dB. For example,

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭




g = ´ w




NR 10 max log , 2110

R L

L R

1 1

1 1

( ) ( )

where  = 2,1L R 11
oi 2

1 1
∣ ( )∣ denotes the transmission coefficient from the L1 port to R1 port and

 = 1, 2R L 11
oi 2

1 1
∣ ( )∣ denotes the transmission coefficient in the reverse direction, expresses the nonreciprocity

between the two ports of the top transmission line. Note that wmax refers to the themaximumof this quantity as
a function of frequency for all other parameters fixed.

This completes the description of the four-port device in terms of its scatteringmatrix, as parameterized
through a lumped-elementmodel of the coupledmicrostrip resonator pair.

3.5. Giant intra-guide non-reciprocity and inter-guide transmittance
TheCOMSOL simulation presented in section 2.2 indicated that our four-port -symmetric photonic
structure demonstrates strong non-reciprocal intra-guide transport and an enhanced inter-guide transmittance
for a value of the gain and loss parameter close to g g» . However, the complexity of the electromagnetic
problem—involvingmany parameters—was not allowing for a thorough analytical or even numerical
investigation of the properties of the set-up. In contrast, the equivalent lumped circuit, is not only very
transparent but it also provides a very attractive frameworkwhere detailed numerical and analytical
investigations can be performed.

First we demonstrate that the giant intra-guide non-reciprocal behavior and inter-guide transmittance at

g g» is a universal phenomenon and, as such, it pertains also to the transport characteristics of the lump
circuit. Our investigation of the electronicmodel focuses on the frequency region near the symmetric-mode
resonance, where the intra-guide non-reciprocityNR describing the R1 to L1 port isolation, see equation (21), is
typically experiencing itsmaximumvalue. This can be seen infigures 11(a), (b)wherewe observe that the non-
reciprocity between L1 andR1 take values ~NR 80 dBs while the transmittance between L1 and other ports
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(R2, L2) is ~ ~ T T 0 dBsL L L R1 2 1 2
at g g~ . The latter can be evaluated from the parametric evolution of

the eigen-frequencies equation (6) of the corresponding isolated system, see figure 11(c).
Infigure 12we show the dependence of the isolation properties, between intra-guide ports, on the resonator

coupling strength to the transmission lines. The inset illustrates that the position of themaximumNR, denoted
by gmax , is always slightly below the EP, consistent with the above discussion, with a linear relationship.
Themainfigure shows the slope of this linear relation. Deviating only slightly fromunity as the coupling
increases, this shows that the coupling strength is not very important.

Figure 11. Scattering coefficients associatedwith transmittance fromone port to another (indicated as sub-indexes in thefigure
legend) versus the gain and loss parameter γ forω-values where themaximumnon-reciprocal behavior near the symmetricmode is
observed. (a) Fromport L1 to all other ports and (b) fromport R1 to all other ports. Due to the symmetry relationswe do not consider
all scatteringmatrix elements. Other parameters are z = 10 , g= 0.3, g = 0.030 , c= 0.3, m = 0.03, and =d 2.6˜ . (c)The parametric
evolution of the associated isolated circuit with g = 00 . All other parameters are the same as in (a)–(b).

Figure 12.The slope
g
g

d

d
max

MT
versus the scaled coupling capacitances c. Here gmax is the value of γ forwhichmaximumNR is achieved.

In the inset, the linear relation between gmax and gMT is shown for several different coupling capacitances =c 0.1, 0.4, 0.7 as the
scaled gyrator strength g varies from0.1 to 1. Other parameters are z = 10 , g = 0.030 , and m = 0.03.
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Finally infigure 13we report our results forNR as a function of the gain/loss parameter γ and the coupling
phase delay d̃ . The latter defines the scaled distance between the coupling points of the two circuit elements
along the transmission line. Notefirst that the behavior ofNR versus d̃ is periodic with a periodπ andmaxima

near the 1/4wave positions. Specifically we have that p= +d 2n
max 2

1

4( )˜ . This condition is expected due to the

important role that impedancematching between the respective coupling points play in the conditions to
achieve amaximumNR. The sharp increase in theNRwith the gain/loss parameter γ reflects the crucial role
that both the gyrotropy of the inter-resonator coupling and the EPbehavior have in enabling the non-
reciprocity: as discussed in section 3.2, themode coalescence occurring in the neighborhood of g (see
figure 10) has two important consequences. Firstly, it brings the symmetric and antisymmetric frequencies
together. As a result, the incident signal significantly excites bothmodes simultaneously. Secondly, it allows a
gyro-tropically driven non-reciprocal response, provided that the phase relation between the drivenmodes has a
significant quadrature component. This is assured by the presence of theweak intrinsic dissipation g0 and the
novel phaser coalescence near the EP.Wenote that in our four port device, this weak dissipation can be
effectively provided by radiative coupling into the second transmission line.

4. Conclusions

Wehave analyzed the transport properties of amirror-symmetric photonic circuit consisting of two resonators
—onewith gain and the other onewith equal amount of loss. The photonic structure is placed on top of a
gyrotropic substrate and it is coupled together andwith two buswaveguides. Via numerical simulations in the
microwave domainwewere able to demonstrate that the system shows anomalous transport properties: strong
intra-guide non-reciprocal transport and inter-guide enhanced transmittance. These features are universal and
can be explained using an equivalent lump circuit. The latter allows for an exact theoretical descriptionwhile due
to its relative simplicity, it offers new insights in the anomalous transport properties of the photonic circuit.
Using this frameworkwefind that the origin of the anomalous transport is associatedwith the interplay of an EP
degeneracywith the gyrotropy. Our resultsmightfind application to reconfigurable beam splitters, buffers and
tunable isolators relevant to communication systems design.
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