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Abstract

We investigate the transport characteristics of a four-port gyrotropic photonic structure with
mirror-time reversal symmetry. The structure consists of two coupled cavities with balanced
amplification and attenuation. The cavities are placed on top of a gyrotropic substrate and are
coupled to two bus waveguides. Using detail simulations in the microwave domain we demonstrate a
strong non-reciprocal intra-guide port transport and an enhanced inter-guide port transmittance.
The non-reciprocal features are dramatically amplified in the gain—loss parameter domain where an
exceptional point degeneracy, for the associated isolated set-up, occurs. These results are explained
theoretically in terms of an equivalent lumped circuit.

1. Introduction

Synthetic photonic structures with anti-linear symmetries have attracted a lot of attention during the last five
years [1-20]. Due to the presence of appropriately tailored amplification and attenuation elements, they are
described by non-Hermitian mathematical models which violate the time reversal symmetry 7 . Nevertheless,
these systems respect a join antilinear symmetry ST, where S represents some linear operator associated with a
spatial symmetry (e.g. parity, m-rotations, mirror symmetry etc). Typically the associated mathematical models
also violate the S-symmetry. The most prominent category are parity-time (P7 ) symmetric systems, where the
linear operator P is associated with the parity. The invariance under P7 -symmetry imposes certain constrains
on the spatial arrangement of the gain and loss elements. Specifically the index of refraction of a P7 -symmetric
photonic system must satisfy the condition n(r) = #*(—r)[1, 2]. An obvious motivation for the investigation
of PT -symmetric structures is that they provide an excellent playground to study the effects of symmetries (and
their violation) in a controllable laboratory environment [2—7]. But most importantly, it turned out that these
systems can open new technological avenues for the manipulation of electromagnetic signals. Thus, phenomena
like asymmetric transport [5, 6, 12—14], unidirectional invisibility [3, 4, 8], non-reciprocal Bloch oscillations

[9, 10], control of lasing modes [6, 7], CPA-lasers [15, 21], lasing suppression via gain [ 17—19], unidirectional
lasers [20] and hypersensitive sensors [22] are some of the new technological features associated with these type
of structures.

Given the above success of P7 -symmetric photonic structures it is natural to extend the investigation into
the more general family of S7 -symmetric systems. Of special interest is the case where magneto-optical effects,
associated with a vector potential which cannot be gauged away, are involved [14, 20, 23, 24]. In this case the
notion of time-reversal symmetry has to be adopted accordingly, i.e. it is not only associated with a simple
conjugationi — —ibutitalsoinvolves a change in the direction of the vector potential. The motivation to
investigate this type of photonic structure is associated with the possibility to induce giant non-reciprocal effects
—atheme of ongoing intense investigation [25—28]. Traditionally ferrite materials such as yttrium—iron garnet
(YIG) are invoked in the design of photonic (both in the microwave and optical) non-reciprocal devices. The
degree of non-reciprocity in any particular application is always a trade-off between the strength of the
gyromagnetic coupling, losses associated with spin-wave relaxation, and the geometry of the wave-ferrite
interaction.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic representation of a half-wavelength microstrip dimer structure side-coupled at the two ends with two
transmission waveguides equally spaced from the dimer which are placed on top of a YIG-substrate. Gain and loss are locally applied
in a uniformly distributed manner in the spatial domains underneath the two half-wavelength microstrip resonators. A static magnetic
bias of H, magnetizes the substrate (excluding the region underneath the two transmission waveguides) in the y-direction.

In this paper we analyze the transport characteristics of a four-port photonic structure with anti-linear
mirror-time reversal (M7 ) symmetries in the presence of magneto-optical effects. The structure consists of
two M7 -symmetric cavities on a YIG substrate shown in figure 1. The cavities are coupled to two bus
waveguides. We show that the whole structure possesses strong non-reciprocal behavior between left and right
ports associated with the same waveguide (intra-guide ports) while it demonstrates an enhanced transmittivity,
due to the active elements, between cross-ports of the two different waveguides (inter-guide ports). This
behavior is strongly enhanced in the parameter domain where exceptional point (EP) degeneracies of the
underlying isolated resonators occurs. The results are numerically demonstrated in the microwave domain and
are accompanied by a thorough analytical study of alumped circuit equivalent.

The organization of the paper is as follows. In the next section 2 we introduce the microwave photonic
structure. A numerical analysis of the eigenmodes is reported in section 2.1 while in section 2.2 we report our
numerical results for the transport properties of this system. In section 3 we present the lumped circuit analog
and theoretically analyze its transport characteristics. Specifically in section 3.1, we present a general
introduction to the lumped elements of an M7 symmetric system and their equivalence with the microwave
components. In section 3.2 we present the lumped analog of the four-port microwave photonic structure. First
we analyze the eigenmodes of the isolated set-up in section 3.3. In section 3.4 we analyze the properties of the
scattering matrix of this system. Finally section 3.5 discuss the scattering properties of this system and
demonstrate the universal nature of the non-reciprocal intra-guide transport in such set-ups. Our conclusions
are given at the last section 4.

2. Microwave photonic structure

The microwave photonic structure that we consider, shown in figure 1, is the minimal four-port microstrip
configuration capable of demonstrating M7 symmetric nonreciprocity. It consists of two transmission lines,
each connected to aleft and right port. A pair of proximity coupled half-wave resonators, refered to as the dimer,
bridge the space between the waveguides. Small gaps end couple the dimer to each of the transmission lines,
leading to a coupling between the two transmission line buses dominated by the dimer resonator. All of the
microsrtip structures lay on the top of a 8.75 mm thick YIG substrate, with relative permittivity ¢, = 15 [29],
and a ground plane below. The resonator dimer and the transmission waveguide traces are modeled in the thin,
perfect conducting limit. The length of the microstrip resonators are chosen tobe [ = 24.5 mm long,
supporting half-wavelength resonances of approximately w/27m = 1.24 GHz. The distance between the two
microstrip resonators is d = 20 mm which correspond to a phase delay d = kd = 2.36 rad. Later on in
section 3.5 we discuss the role of the phase delay in our construction. The microstrip ends are separated by a

0.5 mm gap from the sides of the two 3 mm wide transmission lines.

The YIG-substrate is divided into two types: (i) active domains in the regions just underneath the two
microstrip resonators, and (ii) a passive domain elsewhere (see figure 1). A balanced gain and loss is introduced
in the two active regions by adding opposite imaginary parts to the YIG permittivity, ¢, = 15 x (1 £ i), to
each resonator of the dimer. Here, yis a parameter designating the strength of the balanced gain or loss defined
so that each resonator, if isolated, would experience exponential growth or decay with v = |2 Im(w)/Re(w)|.
The parameter o is a numerically determined factor of (order unity for the configuration of figure 1) accounting
for the precise geometrical configuration of the modified permittivity. Furthermore, the YIG-substrate is
magnetized with a DC bias field H, along the y-axis, parallel to the resonator microstrips. The magnetic
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Figure 2. The set-up of figure 1 respects a mirror-time reversal M7 symmetry. The mirror symmetry M is defined with respect to
the yz-planeatx = 0.

permeability matrix [ that describes the YIG takes the form:

1 0 iR, o
=gl 0 1 0 f[p=1+kKeke=———, 1
—ik, 0 p, “Wo— W

where wy = 11,7, Hoand wp, = p,7, M, and we have neglected loss. Here, wy corresponds to the precession
frequency of an electron in the externally applied magnetic bias Hy of 1600 Oe, and wy, denotes the electron
Larmor frequency at the saturation magnetlzatlon M, =22 G of the ferrite medium with gyromagnetic

constant 5, = 1.76 x 10" rad sT™'. Additionally, /1, and w represent the permeability of free space and angular
frequency of the radiation.

The structure shown in figure 1 respects an antilinear mirror-time reversal symmetry as is demonstrated in
figure 2. The linear mirror-symmetry operator M performs a reflection (x, y, z) — (—x, y, z) with respect to
the mirror yz-plane atx = 0 and reverses the direction of the magnetic field Hy — —Hj. The antilinear time-
reversal operator 7, performs a complex conjugationi — —itogether with an inversion of the direction of the
magnetic vectors i.e. Hy — — Hy. In the specific case of gain and loss elements the complex conjugation
operation is equivalent to the exchange of the gain and loss elements.

2.1. Eigenmode analysis of the isolated system
We start our analysis with the parametric evolution of the eigenfrequencies of the isolated dimer associated with
the photonic set-up of figure 1.

A novel feature of non-Hermitian systems with antilinear symmetries, is the possibility to possess an entirely
real spectrum for some values of the gain/loss parameter y[30]. In this parameter domain, coined exact phase,
the eigenmodes are invariant under the antilinear operator. As the gain/loss parameter v, increases beyond some
critical value v > v, the spectrum becomes partially or completely complex and the system enters the so-
called broken phase. In this domain the eigenmodes do not respect the antilinear symmetry—although the
system itself remains invariant under M7 . At v = 7, .7 the eigenfrequencies and the associated eigenmodes
coalesce and the system experiences an EP degeneracy.

We investigate the M7 -symmetry phase transition for the set-up of figure 1 with the bus waveguides
removed (see insets of figure 3). We refer to this as the isolated configuration. Using the 3D-finite element
electromagnetic (FEEM) eigenfrequency simulation package of COMSOL [31] we explore the M7 -symmetry
phase transition for three scenarios associated with the distribution of the gain and loss media (the modified
permittivity) beneath the microstrips: (i) the gain and loss are collapsed into a localized patch at the resonator
ends, as shown schematically in the inset of figure 3(a); (ii) the gain and loss is uniformly distributed over the left
and right sides of the whole YIG-substrate, as shown in figure 3(b); and; (iii) finally, the case originally described
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Figure 3. Parametric phase transition of the eigenmodes with increased ~y, obtained using 3D-FEEM eigenmode solver package [31].
The balanced loss and gain are introduced in alocalized (a) and distributed manner (b). In (c) we present the results for the
configuration of figure 1.In (a) )7 = 1.6741;in (b) 7,7 = 0.095 and in (c) 7, = 0.26.

in figure 1 where the gain and loss is confined directly beneath the individual resonator striplines is reported in
figure 3(¢).

The purpose of the analysis of these isolated system scenarios is to demonstrate that the M7 -symmetric
behavior is only weakly dependent on the details of how the gain and loss is actually achieved. While the latter
two scenarios could be realized in the optics framework by appropriately distributed gain and loss media, case (i)
is more relevant to the microwave domain. Concentrating the gain and loss into a small patch at the anti-nodes
of the half-wave electric potential oscillations in the microstrip resonator mimics the action of descrete
electronic gain or loss elements such as transistors or resistors [21, 32]. In all cases, the geometric parameter « is
calibrated to preserve the stated meaning of the gain/loss parameter .

Figure 3 illustrates the parametric evolution of the isolated eigenfrequencies as a function of the gain/loss
parameter. When v = 0, the coupled microstrip resonators support two low order resonant modes: a
symmetric (low frequency) and an antisymmetric (higher frequency) modes defined by the parallel and anti-
parallel directional flow of the surface currents in the srtiplines. For 7y = 0 the associated eigenfrequencies have
asmall and similar imaginary value due to a weak radiative loss to the simulation boundaries. As yincreases the
real part of the eigenfrequencies of the modes changes (see figures 3(a)—(c)) while the associated imaginary part
remains the same. At some critical value of the gain/loss parameter v = 7, ,7, the eigenvalues coalesce and a
spontaneous M7 -symmetric phase transition occurs. For v > v, ., the real part of the eigenfrequencies
remains degenerate while their imaginary part bifurcates to two distinct values of opposite sign. The eigenmodes
take on aleft/right flavor with the gain side exponentially growing in time, and the loss side exponentially
decaying in time. The main results in this figure show that the quantitative behavior of the three set-ups (i)—(iii)
is the same and does not depend on the details of how gain and loss are introduced into the system. For the
remainder of the simulations of the non-isolated system, we will restrict analysis to the case (iii), where gain and
loss are confined to be below the individual resonator microstrips.

2.2. Transport properties

Next we turn to the analysis of the transport characteristics of the four-port system of figure 1. The structure is
simulated with COMSOL’s 3D FEEM numerical software. A mesh density with element size of \/8 within the
active domains underneath the two microstrips and A/4 in the surrounding bulk YIG-substrate was used, and
confirmed for accuracy, where A is the wavelength inside the medium. Quasi-TEM waves are introduced or
collected from the device transmission lines via impedance-matched ports, supplied through the COMSOL
software, defined between the edge of the microstrip waveguide and ground plane. An example of the frequency
dependence of the scattering matrix elements is shown in figure 4 for three values of the gain and loss parameter
~v. For intermediate values of v we observe a strong non-reciprocal effect for intra-guide transmittance while the
inter-guide transmittance is enhanced. A density plot of the propagating electromagnetic field for the value of y
where this effect is observed, is reported in figure 5. Below we further analyze this behavior”.

Numerical simulations were carried out to quantify the dependence of the scattering coefficients between
various ports as a function of increasing gain—loss parameter. We report only the transmitted signals with
incident wave entering the structure from port R; and/or port L;. All other transmitted coefficients (and also
reflections to the incident ports) are related with the reported transmittances via symmetry considerations, see
section 3.4. For example Tj _,g, = Ti,_.g, etc. An impressive conclusion of our analysis is the fact that for some

We restrict all of the following discussion in the frequency regime near the symmetric mode where the transmission of waves through the
system shows a maximum non-reciprocity.
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Figure 4. Typical behavior of various scattering matrix elements of the set-up of figure 1 for three values of the gain and loss parameter
~:(a) v = 05(b) v = 0.136;and v = 0.15. In all cases the value of the gain and loss parameter is smaller than the EP of the
corresponding closed system. Other scattering matrix elements are related to the reported ones via symmetry considerations—see
section 3.4—and therefore are not reported here.
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Figure 5. Density plot of the field intensity for incident waves entering the structure from: (a) port L2 and; (b) port R1. The field
distribution when = 0.136, for the case where the incident wave enters the structure from port L1 is mirror symmetric to the results
of (a). Similarly the field distribution for the case where the incident wave enters the structure from port R2 is mirror symmetric to the
results of (b).

critical value of the gain—loss parameter (y=0.13601) a giant isolation of the L; port from the signal transmitted
from the R, portisachieved (i.e. Tz,—.1, ~ —90 dB or essentially zero) while at the same time we have a healthy
signal that is radiated towards the L, port (Tg,_,1, ~ —0.2 dB). The signal transmitted from port L, to port Ry, is
Ti,—Rr, ~ —0.2 dBs while we have also a healthy signal from L, to L, ports, Tj, ., ~ 7 dBs. We finally note thata
non-reciprocal intra-guide behavior can occur for another value of 7 = 0.15. However the phenomenon here is
not as dramatic as previously. Below we proceed with a qualitative explanation of this strong intra-guide non-
reciprocal effect, while in sections 3.4 and 3.5 we provide a detail theoretical explanation based on equivalences
with alumped circuit.

The nonreciprocity shown in figure 6 has it’s roots in the different propagation constant for circularly
polarized waves travelling parallel to a static magnetic field exhibited in an otherwise isotropic magnetic
medium. The question here is how can this difference be used to achieve a nonreciprocal transmission, and
under which conditions the M7 - symmetry enhance the isolation? A classic ferrite-based nonreciprocal device
needs to (1) create a circular polarization containing magnetic fields rotating perpendicular to the static bias
magnetic field, and (2) allow separate components of the chiral wave to travel along paths that interfere upon
recombination. The rotating field components couple differently to the spin precession of the magnetized
ferrite, and experience a resulting phase difference. The structure of this four port device includes all of these
features in its design.

Although there is not any obvious circular polarization, the symmetric and antisymmetric modes of the
resonator dimer allow the equivalent to occur. Quasi-TEM waves on a single microstrip have only one
polarization defined by the single mode, but a pair of parallel striplines, having two components, can result in
two independent magnetic fields. These wave fields, perpendicular to the static field, also include components
perpendicular to each other, the necessary condition for the gyromagnetic coupling. The symmetric mode, with
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Figure 6. Scattering parameter analysis of the four port structure configuration shown in figure 1 depicting the effect of increasing the
gain—loss parameter achieved by varying the imaginary part of the dielectric permittivity in the active substrate domains lying
underneath the two microcstrip resonators, on the signal transmitted (a) from the L; port and (b) from the R, port, to all other ports.
Other scattering matrix coefficients, describing transport from other ports are not presented here since they are connected via
symmetry relations with the reported scattering coefficients—see section 3.4.

oswes

Symmetric

wave
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Figure 7. Schematic illustration of the application of the right-hand-rule to obtain the mutually significant substrate magnetic field
produced by parallel (top) and anti-parallel (bottom) stripline currents of the symmetric and antisymmetric modes, respectively. The
solid arrow shows the dominant component, mutually perpendicular to the applied DC field and parallel to the currents, both into the
plane of the figure. These components are responsible for the gyrotropic coupling of the stripline resonator modes.

parallel stripline currents, is dominated by a mutual substrate magnetic field parallel to the plane of the substrate.
The antisymmetric mode, with anti-parallel currents, is dominated by a mutual substrate magnetic field
perpendicular to the plane of the substrate. Figure 7 schematically illustrates the application of the right-hand-
rule to the region of the substrate significantly influenced by the current-induced fields of both modes.

The rotating field requirement imposes further conditions on the resonances. The fields of figure 7 need to
be excited simultaneously. Normally this would be difficult to achieve since the two modes are split by non-
gyrotropic coupling. However, the symmetry of the transmission line coupling helps in this respect. Depending
on the path delay of the resonator coupling to the transmission lines, resonant mode and the off-resonant mode
can have different effective coupling strengths to the wave excitation in the waveguide. For example, the
resonant mode could be weakly coupled, and the off-resonant mode could be strongly coupled, resulting in a
more balanced excitation of both modes by the same frequency. Another rotating field requirement is that there
be a quadrature phase difference between the two modes of figure 7. Without dissipation, symmetry of the
structure prevents such a phase delay: the resonances are either in-phase, or out of phase, with the effective drive.
However, a resonant quadrature phase relationship will be introduced by any small dissipation, usually naturally
occurring, that assures some finite bandwidth while passing through the quadrature condition. The second

6
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non-reciprocity requirement that there is a path-length difference, is available through both the phase delay
associated with the spatial separation of the end coupling to the resonator elements, and as an inherent ‘dwell
time’ of a resonator.

It is now clear why the non-reciprocity could be enhanced by the M7 symmetric behavior. As the gain/loss
parameter y progresses toward the EP, v, .-, both the frequencies of the modes and their phases coalesce. The
novel eigenfrequency and eigenmode behavior present in these systems introduces a new parameter distinctly
capable of tuning the device in unusual ways to enable the gyrotropic coupling.

The next section discusses these features in the context of the simpler lumped-element model containing
only the essential parameters.

3. Lumped circuitry analog

3.1. Lumped elements

The configuration simulated in section 2 consisted of the active, gyromagnetically coupled microstrip dimer
coupled to the two microstrip transmission lines making up the ports. As simple as this system is, the subtlety of
the physical coupling between the microstrip elements and the mode structure of the coupled resonators
required the COMSOL analysis for an accurate prediction of the device behavior. A more intuitive approach that
naturally leads to a theoretical analysis is the lumped element electronic analog. Here, the resonator pair with its
inter-resonator coupling and gain/loss character are replaced by appropriately coupled LC circuits. All spatial
symmetry considerations,with the exception of the phase delay associated with the microstrip sections between
the resonator ends, can be reduced to a matter of network topology defined through the application of Kirchoff’s
laws to fundamental electronic elements. Physical symmetry is reduced to the circuit network as defined by its
node topology with appropriately valued connecting elements. The parity, mirror, and time reversal operations
are equivalent to the interchange of labels corresponding to pairwise associated circuit nodes, with proper
consideration of the resistive and gyrotropic elements through a sign change.

Resistors change their sign upon time-reversal, where negative resistance represents the simplest conceptual
inclusion of amplification into electronics. Dissipative loss turns into gain and Kirchoff’s laws can be used
without modification subject to a condition described below. Experimentally, negative resistance can easily be
implemented with negative impedance converters but can only approximate the ideal due to inherent
limitations of the required amplifying components [21].

Analysis of circuits including negative resistance elements, however, requires respecting a subtle condition:
any two terminal circuit structure reducing to a pure negative resistance will be undefined unless the structure is
placed in parallel with a capacitance. This conclusion results from the divergence of the pole associated with
parallel RC,, combinations (with R < 0) in thelimitof C, — 0. The pole with the usual positive resistance has a
sign that corresponds to exponential decay and therefore has a physically valid limit as C, — 0. For example, the
solution for the standard series LRC circuit, though it appears to have a mathematically appropriate solution for
negative R, is non-physical in that realm: the hidden pole corresponds to an exponentially growing solution with
adivergingrateas C, — 0.The parallel LRC configuration with R > 0 is not subject to this oversight.

The gyrotropic nature of the biased magnetic substrate beneath the microstrip resonator dimer is included
electronically by the gyrator, shown schematically in figure 8 and defined by its conductance matrix, with G,

being the strength of the gyration
il _ 0 Go V1
(iZ) - (—Go 0 )("2)‘ @

Although as an actual device, the ideal gyrator can only be approximately implemented in the microwave
regime, we nevertheless include it for its conceptual simplicity in allowing a lumped model for the substrate
mediated interaction. The mirror operation applied to this device changes the sign of G,.

Thus, for a M7 -symmetric circuit incorporating these basic elements, it is necessary that (1) all reactive
elements either have representation in parity-associated network pairs, or directly connect parity inverted
network nodes, (2) all Ohmic elements are paired with opposite sign, and (3) each negative Ohmic element has
an associated parallel capacitance, or AC equivalent, as part of the circuit. Valid M7 -circuits of arbitrary
complexity can be built up using these simple rules, though their stability needs to be independently determined.

3.2. Electronic analog circuit

Figure 9(a) shows the M7 -symmetric lumped element circuit used to simplify the four-port microstrip device
simulated in COMSOL. The microstrip resonator pair is replaced by a pair of LC resonators, with the left side
experiencing a gain, and the right side experiencing a loss of equivalent magnitude represented as respective
negative and positive parallel resistances of magnitude R. The original microstrip resonators experience both

7
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Figure 8. Ideal gyrator showing the current and voltage definitions for its conductance matrix, equation (2).

(a) Transmission Line 1 (b)
d
[T
L, Port C, C. R, Port I I
C L s TN \ L C + — —_—

R —_— \ M G ) —_— R VG dimer VL
\ / — [ ] —

L, Port CC CC R, Port _ _

Transmission Line 2

Figure 9. Equivalent electronic circuit. The full circuit shown in (a) reduces the stripline resonators to a lumped equivalent RLC pair
with mutual coupling that includes both inductive and gyrotropic components. The transmission line coupling is reduced to single

capacitances spaced at d along the ideal TEM transmission lines. The isolated resonator pair is then further reduced to its equivalent
conductance matriX, Ggimer, Shown in (b).

capacitive and inductive coupling due to their proximity, and a gyration component arising from the biased
magnetic substrate. The lumped element resonator coupling is limited to mutual inductance, which captures the
proper mode splitting of the quasi-TEM proximity coupling, and a pure gyration component.

The resonators are capacitively coupled by C, to points along an ideal TEM transmission line, separated by a
length d. The transmission lines with impedance Z, are then continued on to the device ports, which in this
lumped model, are collapsed to the respective nodes of figure 9. Realistic values for the lumped components can
be chosen to match the observed resonances of the COMSOL simulation.

This model, with the resonator section limited to the four parallel nodes of the LC resonator pair, provides
for a convenient separation of the complete dimer into a generic conductance matrix, Ggimer» as illustrated in
figure 9(b). This separation not only simplifies the expression of Kirchhoff’s laws for the complete system, but
also simplifies the analysis of the isolated dimer described by the solutions of Ggjpe, V = 0 with

2 _
(1 0) o 0 (M /j)
01 R =
= 2 4| " T A Y

0 1
G imer — ( >, 3
! Zreac (W) 0 of WL - ‘\-1 0 @)
2

V;
where V = ( g) with the entries V,; and V| denoting the voltage across the gain side and the loss side of the
1

dimer, as illustrated in figure 9. In the first term of equation (3), Z ¢, (w)™! = iwC + (iwL)~!is the conductance
of the individual parallel LC resonators, while the second term gives the negative and positive conductances
associated with gain and loss sides, which in general might not be exactly balanced. The third and fourth terms
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express strength of the inter-resonator coupling, given as the equivalent conductances associated with mutual-
inductance M = pL and the gyration, respectively.

Kirchoff’s laws for the dimer including only this mutual inductance and gyration coupling between the
oscillators are simplified by scaling the frequency and conductance by the bare LC natural frequency
Wy = l/m, giving DV = 0 with

- 1 W
+ 1w + —
B w2 £ e
D= B 1 + Yoh, 4
< — +10+ —
Swa-,y (1= )
where the scaled conductance matrix D has been separated into an MT symmetric part with balanced gain/

loss parameter « and a small unbalanced intrinsic loss ~, satisfying 7, — v = —RL \/g and v, + v =
1

Ri\/g . The scaled gyrator strength is ¢ = Gy \/g , the scaled frequency is & = w/wy, and I, is the
identity matrix.

3.3. Eigenmode analysis

First we discuss the normal modes of the isolated balanced dimer by setting ~, = 0. The structure of that part of
equation (4) implies relatively simple forms for the eigenvalues and eigenvectors. Respecting this structure
indeed leads to a tractable form for the eigenvalue equation

(@2_1_1”)(@2_liu)_(gz_wz)wzzo ©

with eigenvalues of the antisymmetric and symmetric modes

V=7 £ e -7
2

along with their redundant negatives, which are defined in terms of two critical points for the gain/loss
parameter, i. e., the M7 symmetry breaking point

2
o 5 1 B 1
VMT\/g+[\/1+u \/l—u] @
1 1 ’
— 2
%_\/g+[\/1+u+\/l—ﬂ]' ©

Note that the given forms explicitly show all of the relationships among the analogous EPs and the real and
imaginary parts of the frequencies. The exact phase below the symmetry breaking point, 0 < v < 18
characterized by two purely real eigenfrequencies, while in the broken phase between this and the upper critical
point, y,,; < ¥ < 7. there is one real frequency with two opposite imaginary parts, and above ., four pure
imaginary frequencies. The opposite imaginary parts impose at least one exponentially growing mode above
v Making the isolated dimer unstable and inappropriate for consideration of steady-state behavior.

The normal modes in the exact phase are characterized by equal magnitudes for the voltage oscillations in
the gain and loss sides, which are given by

@Y (y) = (6)

and an upper critical point

By 1 1 .
Vi), 2 \epld,) ©
witha phase ¢, , of the loss side relative to the gain side of
_ 1 ~0 N2 _ s ~0 H 2 ~0
d)u/s = arg 1 ,u2 - (wa/s) - lfywa/s 1 — ’uz + lgwa/s . (10)

As the gain/loss parameter traverses the exact region, 0 < < > the phase progresses from the in- and
out-of-phase configuration of a Hamiltonian coupled oscillator pair, to a mode coalescence at ;. with a real
frequency &Y = @’ = (1 — p?)~/4 where both the magnitudes and phases of the voltage oscillations are
identical. The role of the gyration strength gis subtle: it acts in an orthogonal sense to the mutual inductance
coupling because of its inherent non-reciprocal coupling of current and voltage, and results in mode phasers
initially related by 7 /2 usually indicative of dissipation. However, in spite of the gyration being characterized by
areal conductance, it is actually a non-dissipative element. Figure 10 schematically illustrates the evolution of
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(a) Normal (b) Gyrotropic =0 (c) Mixed

=0

Lower Mode

------- Upper Mode

Figure 10. Loss side voltage phasors relative to the gain side (4-x-axis) for the low frequency (solid) and high frequency (dashed)
isolated dimer modes. Phasors in (a) are for pure mutual inductance coupling; (b) is for pure gyration coupling; and (c) mixed
coupling. In all cases, the high and low modes coalesce to identical relations as yapproaches .

the left and right voltage mode phasers for pure mutual inductance coupling in (a); pure gyration coupling in (b);
and a combination of the two in (c). In all cases, the high and low mode coalesce as yincreases,
approaching 7, 7.

We note that the gyration is thus imposing a normal mode character to the electronic circuit analogous to the
circularly polarized eigenstates of free electromagnetic waves in the gyromagnetic medium of the device
substrate. The combination of the gyrotropic coupling with normal reactive coupling allow the simple electronic
circuit to embody all of the important features of the more nuanced microstrip dimer.

Now we impose the small unbalanced intrinsic loss, -, of equation (4), into the system to generically account
for losses in any real system. Specifically, up to O (), the eigenfrequencies of the isolated symmetric and
antisymmetric modes pick up nearly equal imaginary parts

s = LIJSO + 11,0, (11)
&, = wf -+ 1,70 (12)
_ g+ 1
NN, ~=N= - 5 = E

The closed system consisting of the nearly M7 -symmetric couples oscillators has now been modified by the
parameter -y, to include a small unbalanced intrinsic loss common to both the symmetric and antisymmetric
modes.

3.4. Scattering set-up

The full device circuit can now be considered by expressing the transmission lines, characterized by their
impedance Z, and phase velocity v, as capacitively coupled to the circuit defined by the conductance matrix
Gaimen lustrated earlier in figure 9(b) and explicitly expressed in equation (4). The scaled coupling
capacitances, ¢ = % are spaced at a scaled distance d = ijﬁ along the respective transmission lines. Kirchoff’s

laws can now be rewritten in the framework of coupled-mode theory, expressing relations among the port wave
components required to match the conductance terminal currents of Ggimer

(COLD + %cm)v = CuL(Vi® — Vi), (13)
VUt = ¢ LDV + PV, (14)
V§U = (, LDV + PVi" (15)
L ! 1 0 el ] : :
Here C,, = (— + Iz) ,L=-(P + L)and P = : are2 X 2 matrices resulting from the
i, 2 JR I
reduction of Kircchoff’s laws with (, = Z, \/g . The incoming and outgoing port wave components for the
) + Vi,
upper transmission line (%1 of figure 9), V" = VL_l and VU = VT respectively, consist of forward (+)
RI RI

and backward (—) traveling wave voltage amplitudes at the left (L;) andright (R,) ports, which for this lumped

10



10P Publishing

NewJ. Phys. 18 (2016) 075010 HlLlietal

. . < Vi Vi
model are shortened to the connection nodes. Similarly, V,* = and V3! = [ If refer to the
R R2

corresponding components for the lower transmission line (#2 of figure 9).
Using the coupled-mode equations (13)—(15), one can get the relations between the outgoing signals and
incoming signals, which definesa4 X 4 scattering matrix S with block elements

SU=si=p— (c,;1+ %(COLD)I)_IL
1 -1
Slz = 521 = (anl + 5(§0LD)71) L (16)
individually defined as
VUt = soiyin 4 goi 17)
vt = g9 Vf + Sgiyin, (18)

Furthermore, using equation (16) together with the definition of the P-matrix we can show that

|S01 (n, n)> = 1S5, ol w(n, n)Pwherem,n = 1,2and m = m — §,,,. We note that this relation connects the
reflectance [Sg. , (1, n) > ata specific port to one of the transmittances to another port | S, (1, n) [*. In the
special case where intrinsic losses are absent, i.e. 7, = 0, itis easy to show from the above equations that the
scattering matrix S satisfies the following symmetry relation:

S\ (w, H) = MTS(w, B)MT = (‘3‘ 3)5*@), FI)(%’“ 2) (19)
Mz(o" 0)-(3), (20)
0 o

where 7 is the time reversal symmetry operator as it was defined previously in the presence of magnetic elements
and M is the mirror symmetry operator. The operator © involved in the definition of the mirror symmetry
reverses the direction of the magnetic field H, — —H, while o, is the Pauli matrix.

Transmission and reflection coefficients are extracted from the elements S} 7 (m, n),wherei=1,2andj=1,
2 designate the top (1) or bottom (2) transmission lines,and m=1,2 and n = 1 2 designate the left (1) or right
(2) ports. For example, the reflection coefficient from the right port of the bottom transmission line would be
Rr, =552, 2) |? and the transmission from that port to the left port of the top transmission line would
be Ty,—1, = 1S9 (1,2) .

To quantify the isolation effect for the signal between any pair of ports we introduce an associated
nonreciprocity parameter, NR, measured in dB. For example,

}, 21

where 7y g = |S {’{ (2,1)]? denotes the transmission coefficient from the L; port to R; port and

Tr 1, = |SY(1, 2)[? denotes the transmission coefficient in the reverse direction, expresses the nonreciprocity
between the two ports of the top transmission line. Note that max,, refers to the the maximum of this quantity as
afunction of frequency for all other parameters fixed.

7’Rl~>L1

NR(v) =10 x maxw{ log ,———

Li—R

This completes the description of the four-port device in terms of its scattering matrix, as parameterized
through a lumped-element model of the coupled microstrip resonator pair.

3.5. Giant intra-guide non-reciprocity and inter-guide transmittance
The COMSOL simulation presented in section 2.2 indicated that our four-port M7 -symmetric photonic
structure demonstrates strong non-reciprocal intra-guide transport and an enhanced inter-guide transmittance
for a value of the gain and loss parameter close to v ~ +, .. However, the complexity of the electromagnetic
problem—involving many parameters—was not allowing for a thorough analytical or even numerical
investigation of the properties of the set-up. In contrast, the equivalent lumped circuit, is not only very
transparent but it also provides a very attractive framework where detailed numerical and analytical
investigations can be performed.

First we demonstrate that the giant intra-guide non-reciprocal behavior and inter-guide transmittance at
7 & Y7 is a universal phenomenon and, as such, it pertains also to the transport characteristics of the lump
circuit. Our investigation of the electronic model focuses on the frequency region near the symmetric-mode
resonance, where the intra-guide non-reciprocity NR describing the R; to L, portisolation, see equation (21), is
typically experiencing its maximum value. This can be seen in figures 11(a), (b) where we observe that the non-
reciprocity between L; and R; take values NR ~ 80 dBs while the transmittance between L; and other ports
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Figure 11. Scattering coefficients associated with transmittance from one port to another (indicated as sub-indexes in the figure
legend) versus the gain and loss parameter -y for w-values where the maximum non-reciprocal behavior near the symmetric mode is
observed. (a) From port L, to all other ports and (b) from port R, to all other ports. Due to the symmetry relations we do not consider
all scattering matrix elements. Other parameters are {; = 1,§=0.3, 7, = 0.03,c=0.3, x = 0.03,and d = 2.6.(c) The parametric
evolution of the associated isolated circuit with ~, = 0. All other parameters are the same as in (a)—(b).
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In the inset, the linear relation between ~_ . and vy, is shown for several different coupling capacitances ¢ = 0.1, 0.4, 0.7 asthe
scaled gyrator strength g varies from 0.1 to 1. Other parameters are ¢, = 1, 5, = 0.03,and p = 0.03.

Figure 12. The slope

versus the scaled coupling capacitances c. Here +,, is the value of y for which maximum NR is achieved.

Ry, Ly)is Ty, 1, ~ Ti,—r, ~ 0 dBsat y ~ 7. Thelatter can be evaluated from the parametric evolution of
the eigen-frequencies equation (6) of the corresponding isolated system, see figure 11(c).

In figure 12 we show the dependence of the isolation properties, between intra-guide ports, on the resonator
coupling strength to the transmission lines. The inset illustrates that the position of the maximum NR, denoted
by 7.« » i always slightly below the M7 EP, consistent with the above discussion, with a linear relationship.
The main figure shows the slope of this linear relation. Deviating only slightly from unity as the coupling
increases, this shows that the coupling strength is not very important.
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Figure 13. A 3D plot of nonreciprocity parameter NR versus gain /loss parameter -y and the scaled distance d. Other parameters are as
infigure 11i.e. {, = 1,§=0.3, 9y = 0.03,c=0.3,and zz = 0.03. The value of ~y, ;- for the corresponding isolated system is

Iz = 0.3 (seefigure 11). Notice also that for smaller values of 7y < +, ,; we have a weak non-reciprocal behavior, and that the
preferred transmittance direction alternates for each domain nw < d< @+ .

Finally in figure 13 we report our results for NR as a function of the gain/loss parameter v and the coupling
phase delay d. The latter defines the scaled distance between the coupling points of the two circuit elements
along the transmission line. Note first that the behavior of NR versus d is periodic with a period 7 and maxima
near the 1/4 wave positions. Specifically we have that d ., = (% + i)Zﬂ'. This condition is expected due to the
important role that impedance matching between the respective coupling points play in the conditions to
achieve a maximum NR. The sharp increase in the NR with the gain/loss parameter 7 reflects the crucial role
that both the gyrotropy of the inter-resonator coupling and the M7 EP behavior have in enabling the non-
reciprocity: as discussed in section 3.2, the mode coalescence occurring in the neighborhood of v, .- (see
figure 10) has two important consequences. Firstly, it brings the symmetric and antisymmetric frequencies
together. As aresult, the incident signal significantly excites both modes simultaneously. Secondly, it allows a
gyro-tropically driven non-reciprocal response, provided that the phase relation between the driven modes has a
significant quadrature component. This is assured by the presence of the weak intrinsic dissipation 7, and the
novel M7 phaser coalescence near the EP. We note that in our four port device, this weak dissipation can be
effectively provided by radiative coupling into the second transmission line.

4, Conclusions

We have analyzed the transport properties of a mirror-symmetric photonic circuit consisting of two resonators
—one with gain and the other one with equal amount of loss. The photonic structure is placed on top of a
gyrotropic substrate and it is coupled together and with two bus waveguides. Via numerical simulations in the
microwave domain we were able to demonstrate that the system shows anomalous transport properties: strong
intra-guide non-reciprocal transport and inter-guide enhanced transmittance. These features are universal and
can be explained using an equivalent lump circuit. The latter allows for an exact theoretical description while due
to its relative simplicity, it offers new insights in the anomalous transport properties of the photonic circuit.
Using this framework we find that the origin of the anomalous transport is associated with the interplay of an EP
degeneracy with the gyrotropy. Our results might find application to reconfigurable beam splitters, buffers and
tunable isolators relevant to communication systems design.
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