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Abstract
We show both theoretically and experimentally that a pair of inductively
coupled active LRC circuits (dimer), one with amplification and another with
an equivalent amount of attenuation, display all the features which characterize
a wide class of non-Hermitian systems which commute with the joint parity-
time PT operator: typical normal modes, temporal evolution, and scattering
processes. Utilizing a Liouvilian formulation, we can define an underlying
PT -symmetric Hamiltonian, which provides important insight for
understanding the behavior of the system. When the PT -dimer is coupled
to transmission lines, the resulting scattering signal reveals novel features
which reflect the PT -symmetry of the scattering target. Specifically we
show that the device can show two different behaviors simultaneously, an
amplifier or an absorber, depending on the direction and phase relation of the
interrogating waves. Having an exact theory, and due to its relative experimental
simplicity, PT -symmetric electronics offers new insights into the properties of
PT -symmetric systems which are at the forefront of the research in
mathematical physics and related fields.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

PACS numbers: 11.30.Er, 05.60.−k, 45.05.+x

(Some figures may appear in colour only in the online journal)

1. Introduction

Among the many recent developments in PT systems, the application of pseudo-Hermitian
ideas into the realm of electronic circuitry not only promises a new generation of electronic
structures and devices, but also provides a platform for detailed scrutiny of many new concepts
within a framework of easily accessible experimental configurations. A first example of this
was the demonstration in [1] that a pair of coupled LRC circuits, one with amplification and the
other with equivalent amount of attenuation, provided the simplest experimental realization
of a PT symmetric system. With a normal mode structure where all dynamical variables are
easily measured in the time domain, extensions of the circuit approach will provide a valuable
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testing ground for further developments into more sophisticated structures. Moreover, the
PT -circuitry approach suggested also opens new avenues for innovative electronics
architectures for signal manipulation from integrated circuits to antenna arrays, and allows for
direct contact with cutting edge technological problems appearing in (nano)-antenna theory,
split-ring resonator arrays, and meta-materials.

Examples of PT -symmetric systems range from quantum field theories and mathematical
physics [2–5] to atomic [6, 7], solid state [8–10] and classical optics [11–19]. APT -symmetric
system can be described by a phenomenological ‘Hamiltonian’Hwhich may have a real energy
spectrum, although in general H is non-Hermitian. Furthermore, as some parameter γ that
controls the degree of non-Hermiticity of H changes, a spontaneous PT symmetry breaking
occurs. At this point, γ = γPT , the eigenfunctions of H cease to be eigenfunctions of the
PT -operator, despite the fact that H and the PT -operator commute [2]. This happens because
the PT -operator is anti-linear, and thus the eigenstates of H may or may not be eigenstates of
PT . As a consequence, in the broken PT -symmetric phase the spectrum becomes partially
or completely complex. The other limiting case where both H and PT share the same set of
eigenvectors corresponds to the so-called exact PT -symmetric phase in which the spectrum
is real. This result led Bender et al to propose an extension of quantum mechanics based on
non-Hermitian but PT -symmetric operators [2, 3]. The class of non-Hermitian systems with
real spectrum has been extended by other researchers in order to include Hamiltonians with
generalized PT (antilinear) symmetries [20].

While the applicability of these ideas in the quantum framework is still being debated,
optical systems provide a particularly fertile ground wherePT -related concepts can be realized
[11] and experimentally investigated [13, 14]. In this framework, PT symmetry demands that
the complex refractive index obeys the condition n(�r) = n∗(−�r). PT -synthetic materials
can exhibit several intriguing features. These include among others, power oscillations and
non-reciprocity of light propagation [11, 14, 16], absorption enhanced transmission [13], and
unidirectional invisibility [18]. Despite these efforts and the consequent wealth of theoretical
results associated with PT -structures, until very recently only one experimental realization
of a system with balanced gain and loss has been reported [14]. These authors studied
the light propagation in two coupled PT symmetric waveguides where the spontaneous
PT -symmetry breaking ‘phase transition’1 was indirectly confirmed. The analysis relied on
the paraxial approximation which under appropriate conditions maps the scalar wave equation
to the Schrödinger equation, with the axial wavevector playing the role of energy and with a
fictitious time related to the propagation distance along the waveguide axis.

This observation led us recently to propose a new set-up based on active LRC circuits
where the novel features of PT -symmetric structures can reveal themselves and can be
studied both theoretically and experimentally in great detail. The system consists of a pair
of coupled electronic oscillators, one with gain and the other with loss. This ‘active’ dimer,
is implemented with simple electronics, and allow not only for a direct observation of a
spontaneous PT -symmetric ‘phase transition’ from a real to a complex eigenfrequency
spectrum but also for its consequences in the spatio-temporal domain. At the same time
the equivalent scattering system, where a localized PT symmetric structure is connected to
one or two transmission line (TL) leads allow us to access the validity of recent theoretical
predictions [17, 21–27].

This paper presents our recent results pertaining to the PT electronics. We begin with
a general discussion of electronics in the context of PT symmetric systems in section 2.

1 We use the term ‘phase transition’ not in the standard thermodynamic sense but rather in the frame of PT -literature
(see for example [2]).
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Figure 1. Two negative impedance converters with their equivalents. (a) A ground referenced
negative resistance node. (b) A floating, two-terminal negative resistance.

Then in section 3 we examine the normal mode structure of the simplest such circuit, the PT
dimer. We experimentally demonstrate how it displays all the novel phenomena encountered
in systems with generalized PT -symmetries. Section 4 discusses the unique aspects of PT
dynamics exhibited by the dimer, particularly upon passage from the exact to broken phase. In
section 5 we investigate the simplest possible scattering situation where the dimer is coupled
to a single TL, and derive a non-unimodular conservation relation connecting the left and
right reflectances. A direct consequence of this relation is the existence of specific frequencies
for which the system behaves either as a perfect absorber or as an amplifier, depending on
the side (gain or loss) to which the TL is coupled. In section 6 we demonstrate theoretically
and experimentally that a two-port PT -symmetric electronic cavity can act as a simultaneous
coherent perfect absorber (CPA)-amplifier. Our circuit is the electronic equivalent of a CPA-
laser device which was recently proposed in the optics framework, and constitutes the first
experimental realization of such devices. Finally, section 7 presents several issues involving
practical implementation of PT circuits, along with some related experimental details. Our
conclusions are given in section 8.

2. PT electronics

One of the most convenient advantages of an electronic approach is that, at least in the low
frequency domain, where the wavelength is significantly greater than the dimensions of the
circuit, all spatial symmetry considerations can be reduced to a matter of network topology
defined through the application of Kirchoff’s laws. Physical symmetry is irrelevant as long
as the network has the desired node topology and the connecting elements are appropriately
valued. Analogous to the familiar case of a PT -symmetric potential, the parity operation is
equivalent to the interchange of labels corresponding to pairs of associated circuit components.

For simplicity, we will restrict our discussion to the usual fundamental physical devices:
resistors, capacitors and inductors. Only the resistor, due to it’s dissipative nature, requires
modification upon time-reversal where we include generic ohmic elements with either positive
or negative resistance. Negative resistance represents the simplest conceptual inclusion of
amplification into electronics since Kirchoff’s laws can be used without modification. Figure 1
illustrates how simple linear amplifiers can be configured to achieve negative resistance. The
schematic implementation in (a) results in a single, ground-referenced node, while that in (b)
shows a true two-terminal configuration. The former is of greatest utility due to it’s simplicity
and the pervasiveness of ground nodes (defining a common zero potential) in typical circuits.
Section 7 discusses further details of the experimental negative resistance converters.
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Figure 2. Schematic of the PT -symmetric electronic dimer. Both mutual inductance coupling and
capacitive coupling are included for generality.

Theoretical analysis of circuits including negative resistance elements, however, requires
respecting a subtle condition: any two terminal circuit structure reducing to a pure negative
resistance will be undefined unless the structure is placed in parallel with a capacitance. This
conclusion results from the divergence of the pole associated with parallel RC combinations
(with negative R) in the limit of C → 0. This pole only arises if parallel capacitance is initially
considered, so is hidden, and often overlooked in the consideration of negative resistance
circuits. It is inconsequential with normal, positive resistance, where it’s sign corresponds to
exponential decay. For example, the standard series LRC circuit, though it appears to have a
mathematically well behaved solution for negative R, is invalid in that realm due to the hidden
pole. Our choice of the parallel LRC configurations was dictated by this consideration.

Thus, for a PT -symmetric circuit incorporating these basic elements, it is necessary
that (1) all reactive elements either have representation in parity-associated network pairs, or
connect parity inverted network nodes, (2) all ohmic elements are paired with opposite sign,
and (3) each negative ohmic element has an associated parallel capacitance, or ac equivalent, as
part of the circuit. Valid PT -circuits of arbitrary complexity can be built up using these simple
rules, though their stability needs to be independently determined. In principle, the long-wave
approximation could be relaxed with an appropriate inclusion of waveguide connections,
however, this would return geometry into the mix of PT considerations.

3. PT dimer modes

Figure 2 shows the PT -symmetric dimer, the simplest configuration with a non trivial (more
than one mode) pseudo-Hermitian spectrum. Both capacitive and mutual inductive coupling
are included for generality, although the experimental results presented throughout this work
are exclusively one or the other. The gain side on the left of figure 2 is indicated by −R and was
implemented using the configuration of figure 1(a). The loss on the right is achieved with a
conventional resistance of the same value, resulting in the gain/loss parameter γ = R−1√L/C
for this system. Further details of the experimental circuit are given in section 7.

Kirchoff’s laws for the dimer with both mutual inductance coupling and capacitive
coupling between the oscillators are given for the gain side (equation (1)) and loss side
(equation (2)).

V1 = iω(LI1 + MI2) I1 − V1

R
+ iωCV1 + iωCc(V1 − V2) = 0 (1)
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V2 = iω(LI2 + MI1) I2 + V2

R
+ iωCV2 + iωCc(V2 − V1) = 0. (2)

Eliminating the currents from the relations, scaling frequency and time by ω0 = √
L/C, and

taking μ = M/L and c = Cc/C gives the matrix equation:(
1

ω(1−μ2)
− ω(1 + c) − iγ ωc − μ

ω(1−μ2)

ωc − μ

ω(1−μ2 )
1

ω(1−μ2)
− ω(1 + c) + iγ

)(
V1

V2

)
= 0. (3)

At this point, it is obvious that the system isPT symmetric: swapping the indices and changing
the sign of i leaves the equations unchanged. This linear, homogeneous system has four normal
mode frequencies, as required to fulfil any arbitrary initial condition for voltage and current,
given by

ω1,2 = ±
√

γ 2
c − γ 2 +

√
γ 2

PT − γ 2

2
√

1 + 2c
; ω3,4 = ±

√
γ 2

c − γ 2 −
√

γ 2
PT − γ 2

2
√

1 + 2c
; (4)

with the PT symmetry breaking point identified as

γPT = | 1√
1 − μ

−
√

1 + 2c

1 + μ
| (5)

and the upper critical point by

γc = 1√
1 − μ

+
√

1 + 2c

1 + μ
. (6)

Note that the given forms explicitly show all of the relationships among the critical points and
the real and imaginary parts of the frequencies. The exact phase, 0 < γ < γPT, is characterized
by four purely real eigenfrequencies coming in two pairs of positive (ω1, ω3 > 0) and negative
(ω2, ω4 < 0) values, while in the broken phase below the upper critical point, γPT < γ < γc

the eigenfrequencies are coming in complex conjugate pairs with non-vanishing real parts,
and above γc, as two purely imaginary complex conjugate pairs. The broken phase of the PT
dimer is unstable, in that it is ultimately dominated by an exponentially growing mode.

The normal modes in the exact phase are characterized by equal magnitudes for the
voltage oscillations in the gain and loss sides, which in the +ω, real part convention allowed
by the real eigenfrequencies, are given by(

V1

V2

)
±

= 1√
2

(
1

− exp(iφ±)

)
(7)

with a phase φ± of the loss side

φ± = π/2 − tan−1

[
1

γ

(
1

(1 − μ2)ω±
− (1 + c)ω±

)]
. (8)

As the gain/loss parameter traverses the exact region, 0 � γ � γPT, the phase progresses
from the in- and out-of-phase configuration of a Hamiltonian coupled oscillator, to a mode
coalescence at γPT with φ± ∼ π/2 with the real frequency

ω+ = ω− = [(1 − μ2)(1 + c)]−1/4. (9)

Examination of the inductor currents,(
I1

I2

)
±

=
(

1
1−μ2 − μ

1−μ2

− μ

1−μ2
1

1−μ2

) (
V1

V2

)
±

(10)

5
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reveal phase shifts, relative to the corresponding voltages, that advance on the gain side
and retard on the loss side within either mode. This is as required for the net transfer of
electrical energy from the gain side to the loss side as the gain/loss parameter increases. This
evolutionary behavior is helpful in understanding the spectral and dynamical behavior of the
dimer.

An alternate analysis of the dimer is also accomplished by recasting Kirchoff’s laws,
equations (1) and (2) into a ‘rate equation’ form by making use of a Liouvillian formalism

d�

dτ
= L�; L =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−αβ αζ (1 + c)γ cγ
αζ −αβ −cγ −(1 + c)γ

⎞
⎟⎟⎠ (11)

where α = 1/(1 − μ2), β = 1 + c + cμ, ζ = c + μ + cμ and � ≡ (Q1, Q2, Q̇1, Q̇2)
T with

Qn = CVn. This formulation opens new exciting directions for applications [28] of generalized
PT -mechanics [20] as it can be interpreted as a Schrödinger equation with non-Hermitian
effective Hamiltonian Heff = iL. This Hamiltonian is symmetric with respect to generalized
P0T0 transformations [28], i.e. [P0T0, Heff] = 0, where

P0 =
(

σx 0
0 σx

)
; T0 =

(
1 0
0 −1

)
K (12)

and σx is the Pauli matrix, 1 is the 2 × 2 identity matrix, and K denotes the operation of
complex conjugation. By a similarity transformation R [28],

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

2i(b+d)

1+√
1+2c

− 2i(b+d)

1+√
1+2c

−1−2c+√
1+2c

c
−1−2c+√

1+2c
c

i(−1−2c+√
1+2c)(b−d)

c
i(−1−2c+√

1+2c)(b−d)

c
2

1+√
1+2c

− 2
1+√

1+2c

i(1+2c−√
1+2c)(b−d)

c
i(1+2c−√

1+2c)(b−d)

c
2

1+√
1+2c

− 2
1+√

1+2c

2i(b+d)

1+√
1+2c

− 2i(b+d)

1+√
1+2c

1+2c−√
1+2c

c
1+2c−√

1+2c
c

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

Heff = R−1HR can be related to a transposition symmetric, PT −symmetric Hamiltonian
H = HT = PH†P , T = K where P = RP0R−1. The matrix H is then

H = −

⎛
⎜⎜⎝

0 b + ir d + ir 0
b + ir 0 0 d − ir
d + ir 0 0 d − ir

0 d − ir d − ir 0

⎞
⎟⎟⎠ (14)

where b =
√

α(β +
√

β2 − ζ 2)/2, d =
√

α(β −
√

β2 − ζ 2)/2 and r = 1
2

√
1 + 2cγ . The

frequencies and normal modes within this framework are identical to equations (4) and (10).
These normal mode properties can be measured in our electronic dimer by simultaneous

observation of the node voltages V1 and V2 of figure 2. Our set-up allows detailed analysis for
gain/loss parameters γ on either side of the PT -phase transition point. In the exact phase,
time series samples are captured with the dimer slightly unbalanced to marginally oscillate the
mode of interest. Beyond the critical point, a transient sample is obtained dominated by the
exponentially growing mode. Details are given in section 7.

In figure 3 we report measurements for the dimer frequencies (left) and inter-component
phases (right) compared with the theoretical expressions, equations (4) and (8) respectively,
for the values μ = 0.2 and c = 0. The PT symmetry imposes the condition that the magnitude
of the two voltage components are equal to one-another in the exact phase. This property is
also experimentally observed. For γ = 0, the phases corresponding to the symmetric and
antisymmetric combination are φ− = 0 and φ+ = π , respectively. When γ is subsequently

6
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Figure 3. Left: Parametric evolution of the experimentally measured eigenfrequencies, versus the
normalized gain/loss parameter γ /γPT . A comparison with the theoretical results of equation (4),
indicates an excellent agreement. In all cases, we show only the Re(ωl ) > 0 eigenfrequencies. The
open circles in the lower panel are reflections of the experimental data (lower curve) with respect to
the Im(ω) = 0 axis. Right: Parametric evolution of the phase difference φ±. Symbols correspond
to experimental data while the lines indicate the theoretical results of from equation (8). The
theoretical φPT (μ) is shown in the inset.

increased and the system is below the PT threshold, the eigenstates are not orthogonal and
their phases can be anywhere (depending on γ /γPT ) in the interval [0, π ].

The value of phase difference at the spontaneous PT -symmetric breaking point γ = γPT
can be calculated analytically and it is given by the expression:

φPT (μ) = arccos

⎛
⎝

√
1 −

√
1 − μ2√

1 +
√

1 − μ2

⎞
⎠ . (15)

We note that in the limit of μ → 0 we get φPT = π/2, corresponding to a ‘circular’
polarization of the eigenmode. The opposite limit of μ → 1 results to φPT = 0 corresponding
to ‘linear’ polarization.

4. PT dimer dynamics

The signatures of PT -symmetry and the transition from the exact phase to the broken
phase are similarly reflected in the temporal behavior of our system. Equation (11) can be
solved either analytically or via direct numerical integration in order to obtain the temporal
behavior of the capacitor charge Qn(τ ) and the displacement current In(τ ) in each of the
two circuits of the PT -symmetric dimer. As an example of the dimer state evolution, we
consider an initial displacement current in one of the circuits with all other dynamical variables
zero.

In figure 4 we present some typical measurements for the temporal behavior of circuit
voltages along with the corresponding numerical result. We consider a dimer configuration
with μ = 0.2 and c = 0 (i.e. inductive coupling only). In the left panel of figure 4(a),
we show V1(τ ) and V2(τ ) for an initial condition having I1(0) = 1.2 mA with all other
dynamical variables zero. The right panel shows the same data as a Lissajiou plot, with the
initial condition trajectory leaving the origin with V1 decreasing, and V2 stationary. Agreement
between the experiment (circles) and the simulations (lines) is observed, illustrating that, in
spite of the presence of dissipative elements and non-orthogonal states, the beat superposition
associated with real frequencies occurs. There is, however, a subtle distinction: since energy

7
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(a) (b)

Figure 4. (a) Gain and loss side voltages versus time compared to the simulation. (b) Gain versus
loss side Lissajous figure for one beat period. At t = 0 an initial current was imposed in the gain
side inductor with all other dynamical variables zero. Note that the end of the beat (indicated
by the arrow near 200 μs) is preceded by a similar point where both voltages pass through zero
(indicated by the arrow near 150 μs) with V2 decreasing, and V1 stationary. This corresponds to
the complementary initial condition starting from the loss side, and illustrates an asymmetric time
between the beat nodal points of oscillatory activity in the two oscillators of the dimer.

is not conserved, the beat is asymmetric between the gain side and the loss side nodal times,
with oscillatory activity spending more time between gain side nodal points as energy grows
to a significantly larger size before decaying and growing between the loss side nodal points.
However, unlike traditional coupled-oscillator beats, instead of ‘slashing’ between both sides
during the course of the beats, a growth and decay energy dance occurs with both sides more
or less equally represented except in the vicinity of the nodal points. This behavior is a direct
result of the non-orthogonal phase relationships that become more pronounced as γ → γPT. A
Hamiltonian dimer would exhibit a perfect half-beat offset between the left and right voltage
beat envelopes.

We have also traced these energy dance features by studying the time-dependence of the
total capacitance energy:

E tot
C (τ ) = Q2

1(τ ) + Q2
2(τ )

2C
. (16)

With the initial condition used in the experiment, we expect power oscillations which are due
to the unfolding of the non-orthogonal eigenmodes [2, 11, 16, 14]. This universal feature is
evident in the temporal behavior of E tot

C (τ ) as can be seen in figure 5. On the other hand, for
γ > γPT the dynamics is unstable and E tot

C (τ ) grows exponentially with a rate given by the
maximum imaginary eigenvalue max{Im(ωl )} (see figure 5).

The most interesting behavior appears at the spontaneous PT -symmetry breaking point
γ = γPT . At this point the matrix L has a defective eigenvalue. In this case, the evolution
U = exp(Lτ ) can be calculated from the Jordan decomposition of L as J = SLS−1. Having
in mind the form of the exponential of a Jordan matrix, it follows immediately that linear
growing terms appear in the evolution of the charge vector (Q1(τ ), Q2(τ ))T [29]. This results
in a quadratic increase of the capacitance energy i.e. E tot

C (τ ) ∼ τ 2. Although all systems
typically becomes very sensitive to parameters near a critical point, we are able to control the
circuit elements sufficiently well to observe the approach to the predicted τ 2 behavior of the
energy. This time range is limited by the dynamic range of our circuit linearity, as discussed
in section 7.

8
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lower and upper circuits, we couple a TL to the gain and loss sides, respectively. Preliminary
experimental measurements for the corresponding reflection coefficients are shown (loss-side red,
gain-side blue) along with the solid line corresponding to R−1

L illustrate the reciprocal nature
RLRR = 1 (see text) of the PT -scattering. Here μ = 0.2, γ = 0.164 and Z0 = 15.5

√
L/C.

5. The Janus faces of PT -symmetric scattering

We report our initial scattering studies with the following two reciprocal geometries: in the
first case, a TL is attached to the left (amplified) circuit of the dimer load while in the second
case, the TL is connected to the right (lossy) circuit of the load (see lower and upper insets of
figure 6 respectively). Experimentally, the equivalent of a TL with characteristic impedance
Z0 could be attached to either side of the dimer at the RLC circuit voltage node in the form

9
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of a resistance R0 = Z0 in series with a variable frequency voltage source. The right and
left traveling wave components associated with the TL would be deduced from the complex
voltages on both sides of R0. With VLC the voltage on the LC circuit, and V0 the voltage
on the synthesizer side of the coupling resistor R0, the right (incoming) wave has a voltage
amplitude V +

L = V0/2 and the left (reflected) wave has a voltage amplitude V −
L = VLC −V0/2.

The voltage source defines the phase of the incoming wave.
At any point along a TL, the current and voltage determine the amplitudes of the right and

left traveling wave components [30]. The forward V +
L,R and backward V −

L,R wave amplitudes,
and V1,2 and I1,2 the voltage and current at the left or right TL-dimer contacts satisfy the
continuity relation

V1,2 = V +
L,R + V −

L,R; I1,2 = [
V +

L,R − V −
L,R

]
/Z0 (17)

which connect the wave components to the currents and voltages at the TL-dimer contact
points. Note that with this convention, a positive lead current flows into the left circuit, but
out of the right circuit, and that the reflection amplitudes for left or right incident waves are
defined as rL ≡ V −

L /V +
L and rR ≡ V +

R /V −
R respectively.

Application of Kirchoff’s laws at the TL leads allow us to find the corresponding wave
amplitudes and reflection. For this analysis, we assume the e−iωt wave convention. For example,
the case of the left-attached lead in the lower inset of figure 6 gives

η
(
V +

L − V −
L

) = IM
1 − γV1 − iωV1

V1 = −iω
[
IM
1 + μIM

2

]; V2 = −iω
[
IM
2 + μIM

1

]
(18)

0 = IM
2 + γV2 − iωV2

where η = √
L/C/Z0 is the dimensionless TL impedance, and IM

1,2 are the current amplitudes in
the left or right inductors. These are equivalent to the simple dimer form equations (1) and (2)
with the addition of the contact current and the opposite sign convention for i more appropriate
for the traveling wave analysis. Similar equations apply for the right-attached case shown in
the upper inset of figure 6. We are interested in the behavior of the reflectance RL/R ≡ |rL/R|2,
as the gain/loss parameter γ , and the frequency ω changes.

For PT -symmetric structures, the corresponding scattering signals satisfy generalized
unitarity relations which reveal the symmetries of the scattering target. Specifically, in
the single-port set up this information is encoded solely in the reflection. To unveil it,
we observe that the lower set-up of figure 6 is the PT -symmetric replica of the upper
one. Assuming therefore that a potential wave at the left lead (lower inset) has the form
VL(x) = exp(ikx) + rL exp(−ikx) (we assume V +

L = 1 and V −
L = rL in equation (17)), we

conclude that the form of the wave at the right lead associated with the upper circuit of figure 6
is VR(x) = exp(−ikx) + rr exp(ikx) = V ∗

L (−x). Direct comparison leads to the relation

rL · r∗
R = 1 → RL = 1/RR and φL = φR (19)

where φL/R are the left/right reflection phases. Note that equation (19) differs from the more
familiar conservation relation R = 1, which applies to unitary scattering processes as a result
of flux conservation. In the latter case left and right reflectances are equal. Instead in the
PT -symmetric case we have in general that RL �= RR [31].

For the specific case of the PT -symmetric dimer, we can further analytically calculate
the exact expression for the reflection coefficients. From equations (18) we have

rL(ω) = − f (−η,−γ )/ f (η,−γ )

rR(ω) = − f (−η, γ )/ f (η, γ ) (20)

f = 1 − [2 − γ m(γ + η)]ω2 + mω4 − iηω(1 − mω2)

with m = 1/
√

1 − μ2.

10
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In the limiting cases of ω → 0,∞ the reflection amplitude becomes rR → ∓1 and thus
unitarity is restored.

In the main panel of figure 6 we plot the reflection coefficients of equation (20) for the
two scattering configurations shown in the sub-panels. The measured reflectances RL, and
RR satisfy the generalized conservation relation RL · RR = 1 as expected from equation (19).
The slight deviation from reciprocity in the vicinity of large reflectances can be attributed to
nonlinear effects.

A peculiarity of our results is the appearance of a singularity frequency point ωJ(μ, γ ) for
which RR → ∞, while a reciprocal point for which RL = 0 is also evident. The corresponding
(ωJ; γ∞,0) are found from equation (20) to be

γ∞,0 = 1

2

(√
η2 + 4μ2

(1 − μ2)
∓ η

)
; ωJ = 1√

1 − μ2
. (21)

Therefore, our experiment demonstrates that aPT -symmetric load is a simple electronic Janus
device that for the same values of the parameters ωJ, μ, γ acts as a perfect signal absorber as
well as a signal amplifier, depending on the side (gain or loss) that the TL is coupled to the
dimer.

For the more general case of a two-port PT scattering, it was shown theoretically in [22]
and later on confirmed experimentally in [30] that the following conservation relation holds:√

RLRR = |T − 1|. (22)

Equation (19) is a special case of equation (22) once we realize that in the single port case the
transmittance T = 0.

6. Two-port CPA-amplifier

Recent theoretical studies in the optics framework [17] have suggested that a two-port
PT -symmetric cavity can act as a simultaneous CPA-laser. In this section we provide the
first experimental realization of this proposal using a two-port configuration of our PT -
symmetric electronic dimer, and demonstrate it’s action as simultaneous CPA-amplifier. We
consider the capacitively coupled case, with c = Cc/C as previously defined, to demonstrate
the independence of the generic behavior from the coupling mechanism. Following steps
similar to the single-port case, Kirchoff’s laws lead to the following set of equations:

η
(
V +

L − V −
L

) + (
V +

L + V −
L

) [
iω(1 + c) + 1

iω
+ γ

]
− iωc

(
V +

R + V −
R

) = 0 (23)

− η
(
V +

R − V −
R

) + (
V +

R + V −
R

) [
iω(1 + c) + 1

iω
− γ

]
− iωc

(
V +

L + V −
L

) = 0. (24)

The above equations can be written in a more elegant form by making use of the transfer
matrix formulation:(

V +
R

V −
R

)
= M

(
V +

L
V −

L

)
; M = 1

2ωcη

(
A + iB iC
−iD A − iB

)
(25)

where the transfer matrix elements M are A = 2η�, B = �2 − η2 − ω2c2 + γ 2,
C = (γ − η)2 + �2 − ω2c2, and D = (γ + η)2 + �2 − ω2c2, with � = ω(1 + c) − 1/ω. One
can further express the spectral transmission and reflection coefficients for left (L) and right
(R) incidence in terms of the transfer matrix elements as [25, 26]

tL = tR ≡ t = 1

M22
, rL = −M21

M22
, rR = M12

M22
(26)

11
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where we have used the identity that det(M) = 1.
An alternative formulation of the transport problem utilizes the so-called scattering matrix

S which connects incoming to outgoing waves and its elements can be written in terms of the
transmission/reflection coefficients. Specifically(

V +
R

V −
L

)
= S

(
V +

L
V −

R

)
; S = 1

M22

(
1 M12

−M21 1

)
. (27)

Using the scattering matrix language one can derive conditions in order our PT -symmetric
structure to act either as an amplifier or as a perfect absorber. For a laser oscillator without an
injected signal, the boundary conditions V +

L = V −
R = 0 apply, which imply from equation (27)

the condition M22(ω) = 0 [26]. In contrast, for a perfect absorber the boundary conditions,
V −

L = V +
R = 0, corresponding to zero reflected waves, hold. From equation (27) this

implies M11(ω) = 0, while the amplitudes of the incident waves must satisfy the condition
V −

R = M21(ω)V +
L . In general, the condition for an amplifier/laser system, is not satisfied

simultaneously with the condition for a perfect absorber. However for any PT -symmetric
structure, one can show from equation (25) that the matrix elements of M satisfy the relation
M22(ω) = M∗

11(ω
∗) [17]. As a result, a real ω = ωJ exists, that satisfies the amplifier/laser

condition simultaneously with the absorber condition (M22(ωJ ) = M11(ωJ ) = 0). Hence
the two-port PT -symmetric dimer can behave simultaneously as a perfect absorber and as an
amplifier. This property can be explored using an overall output coefficient  defined as [17]

 =
∣∣V +

R

∣∣2 + ∣∣V −
L

∣∣2∣∣V +
L

∣∣2 + ∣∣V −
R

∣∣2 . (28)

Note that in the case of a single-port scattering set-up discussed earlier in this section, the -
function collapses to the left/right reflectances. We can further simplify the above expression
using equation (25), together with the property det(M) = 1. We get

(ω) =

∣∣∣V −
R

V +
L
M12(ω) + 1

∣∣∣2
+

∣∣∣V −
R

V +
L

− M21(ω)

∣∣∣2

(
1 +

∣∣V −
R

∣∣2∣∣V +
L

∣∣2

)
|M22(ω)|2

. (29)

At the singularity frequency point ω = ωJ and for a generic ratio V R
b /V L

f , the (ω)-function
diverges as ω → ωJ and the circuit acts as an amplifier/laser. If on the other hand, we assume
that V −

R = M21(ω)V +
L (perfect adsorption condition), we get

(ωJ ) = |M21(ωJ )M12(ωJ ) + 1|2
(1 + |M21(ωJ )|2)|M22(ωJ )|2

= |M22(ωJ )M11(ωJ )|2
(1 + |M21(ωJ )|2)|M22(ωJ )|2 = 0. (30)

In the context of electronics, the two port simultaneous laser/absorber properties are manifest
as a delicate balance of the driven, marginally stable circuit. The singular behavior of the
theoretical  in figure 7(a), solid curves, illustrate that at the Janus frequency ωJ the injected
signals can result in either amplification or complete attenuation, depending on the relative
amplitude and phase of the injected signals. The perfect absorption condition is particularly
sensitive to the injection parameters: the deviation of the experimental data, figure 7(a) dots,
is characteristic of component imbalance of less than 1%. In fact, the minimally absorbing
experimental points near the dip in the attenuation curve of figure 7(a) can only be obtained
by an independent determination of the minimal reflectance condition at each frequency.
Figure 7(b) shows this extreme sensitivity to the phase of the right input signal near ωJ and
illustrates our current experimental limits to the observation of the Janus condition.

12
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(a) (b)

Figure 7. (a) The overall output coefficient (ω) around the Janus amplification/attenuation
frequency ωJ (vertical dashed line) for a PT -symmetric electronic circuit coupled to two ports.
The parameters used in this simulation are η = 0.110, γ = 0.186 and c = 0.161. The red curve
corresponds to the two port coherent input excitation with V −

R = M21(ω)V +
L ; the blue curve

correspond to a two-port input signal with V −
R = V +

L . In the former case the system acts as an
perfect attenuator while in the latter as an amplifier. The dots are experimental values. (b) Plots
of experimental (ωJ ) as the loss side input excitation phase is changed, for several excitation
amplitudes. Note the extremely sharp dependence at the Janus condition.

7. Practical considerations

Although the fundamental theoretical aspects of PT electronic circuits is straightforward, it
is important to realize that all physical electronic elements deviate from their ideal intended
function in two distinctly different ways. First, all have unintentional or stray impedances—
resistive and reactive components—that can become significant as frequency changes. Second,
all components, particularly amplifiers, are subject to linearity limits.

The experimental dimer, equivalent to that shown in figure 2 with either the inductive
or capacitive coupling, consists of a pair of coupled LC circuits, one with amplification in
the form of the negative resistance, and the other with equivalent attenuation. The circuit was
shown in [1] to be a simple realization of the PT -symmetric dimer. Each inductor is wound
with 75 turns of #28 copper wire on 15 cm diameter PVC forms in a 6 × 6 mm loose bundle
for an inductance of L = 2.32 mH. The coils are mounted coaxially with a bundle separation
adjusted for the desired mutual inductance M. The isolated natural frequency of each coil is
ω0 = 1/

√
LC = 2 × 105 s−1.

The actual experimental circuit includes several additions to that of figure 2 acknowledging
the physical realities mentioned above. First, a resistive component associated with coil wire
dissipation is nulled by an equivalent ohmic gain component applied in parallel to each
coil. A discussed in section 2, it is not possible to directly apply a series ohmic gain for
this compensation. This is our dominant deviation from ideal behavior, however, we have
determined from simulation that compensating for this series loss by a parallel gain has
negligible impact on the ideal PT behavior.

Second, additional LF356 op-amps, also used for the negative resistance converter of
figure 1(a), are used for voltage followers to buffer the voltages V1 and V2 of figure 2,
allowing for a less intrusive capture with the Tektronix DPO2014 oscilloscope used for signal
acquisition.

Finally, small capacitance and gain trims are included to aid in circuit balancing.
Our linearity is constrained by the LF356 op-amps in the negative impedance converters

of figure 1(a). At the f ∼ 30 kHz operating frequency, the limits were consistent with
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the ±12 V supply voltage used for the circuit. In fact, the op-amp linearity limited the overall
operation frequency of the dimer: higher frequency op-amps are available, but their linearity
and input impedance suffer.

The linear nature of our system allows an exact balance of the PT symmetry only to the
extent that component drift over a time scale necessary to perform a measurement is negligible.
In the exact phase, real system modes are not perfectly achievable: in time, any physical linear
system ultimately either shrinks to zero or exponentially grows to the physical linearity limit.
In the case of our dimer, component precision and drift dictate the accuracy of the PT balance
to approximately 0.1%, and all data was obtained respecting the linearity limits and associated
transient time scales.

Experimental practice allows for only a marginal determination gain/loss balance. The
chosen gain/loss parameter γ = R−1√L/C is set by the loss-side resistance R of figure 2,
typically in the range 1–10 k� for this work. The gain-side R and capacitance balance are set
with the help of the gain and capacitance trims. In the exact phase, not too close to γPT, the
system is trimmed for simultaneous marginal oscillation of both modes with growth or decay
times greater than ∼1s, where data is then obtained. The imaginary frequency component is
then zero to within ∼1s−1.

Very close to the critical point, γ ∼ γPT attempts to trim the dimer to the marginal
configuration result in either V = 0 (the gain too small), or a chaotic interplay of the two
modes with the op-amp nonlinearity if the gain is larger. This behavior serves as one indication
that the critical point has been exceeded. In the vicinity of γPT and beyond, the capacitance
trim is kept fixed at its asymptotic value, and the gain trim is numerically set to compensate
for any measured deviation of the gain side R chosen from the desired value. The exponential
growth or decay rate of transient data obtained then directly gives us the imaginary component.
Beyond the PT point, the exponentially growing mode always dominates.

At this point, these experimental techniques ultimately impact the limits to which the
theory is applicable, particularly in the vicinity of the symmetry breaking point where small
imbalances can drastically impact the dynamics. We anticipate that, due to the stabilizing
nature of resistive loads in the form of TLs, the PT dimer will provide many opportunities
for incorporation into scattering configurations.

8. Conclusions

The PT -symmetric dimer opens a new direction toward investigating novel phenomena
and functionalities of PT -symmetric systems in the spatio-temporal domain via electronic
circuits. This minimal example, which is experimentally simple and mathematically
transparent, displays all the universal phenomena encountered in systems with generalized
PT -symmetries. The direct accessibility to all the dynamical variables of the system enables
insight and a more thorough understanding of genericPT -symmetric behavior. In addition, we
envision new opportunities for inclusion of PT electronics into structures including (nano)-
antenna configurations, metamaterials, or microresonator arrays with electronic control over
directional signal transmission capabilities and real-time manipulation in the spatio-temporal
domain.
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