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Abstract.  Third sound on a planar geometry at low temperatures is characterized by a rapidly 
diminishing thermal dissipation. Direct mechanical dissipation is limited to that associated with 
defects in the system. This includes interaction with pinned vortices, critical flow at surface 
defect sites, and unintentional acoustic coupling. Dissipation of this latter type is possible in 
the parallel plate geometry of capacitively detected third sound. We calculate the coupling of a 
third sound wave across a contacting bridge to a parallel plane, and investigate the energy 
transfer out of the wave and flow properties of the film in the vicinity of the contact. The 
presence of various mirror waves on the contacting plane is also considered. Experimental 
dissipation is observed in both geometries and it is shown that a single contact is capable of 
accounting for the dissipation as well as an unusually low observed critical velocity. 

1. Introduction 
A common geometry for the study of third sound involves a parallel plate in close proximity to the 
superfluid film within which the third sound propagates. Resonators involving a closed cavity [1], 
capacitive thickness detection [2], or gas confinement for the study of fifth sound [3] are examples. It 
is often the case that both plates participate in the wave motion, as with a closed resonator. Indeed, it 
has been established that wave propagation in the gas is capable of coupling the third sound energy 
from one plate to the other [2], and the detailed equations of motion for such a coupled wave have 
been presented. [4]. We have been developing a capacitively detected resonator where the detection 
electrode is not an inherent part of the resonator surface. One of our goals is the prevention of 
coupling between the plates of the third sound. This requires a low temperature to eliminate the vapor 
coupling, but it also requires the absence of any physical contact between the plates. The presence of 
small physical contacts has not been an issue with previous resonators where the intended wave is 
identical on opposing plates. The quality factors in such resonators can be quite high. 

With this paper, we present our analysis of the consequences of a small contact between two plates 
with different wave states on each plate. We first examine the communication of a plane wave across 
an idealized bridge, and then apply the results to various resonator geometries. Two effects can then 
be quantified: (1) the transfer of energy between the plates, and (2) the concentration of flow at the 
contact point. The first has obvious consequences for the quality factor of a resonator with such a 
contact, and the second will be capable of producing critical flow well before it occurs in the intended 
wave field.  

2. Contact transmission derivation 
We wish to obtain a result of use that is independent of any specific resonator, so we start by 
considering the considering an idealized bridge between two infinite, parallel planes, one of which has 
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a plane wave propagating imposed at infinity. Figure (1) shows the idealized geometry where the point 
contact is taken to be a cylindrical bridge between the two planes. This is a scattering problem which 
  

 Figure 1. Idealized contact 
point. The ambient wave is 
on the top plane. Only the 
scattered components are 
shown. The contact radius is 
a and the length is L. 

 
we solve exactly for simplified equations of motion of third sound. The problem is dominated by 
mechanical fluid coupling, so we take T=0, ρn=0, and ρs=ρ. The linearized equations of motion for the 
height displacement η and superfluid velocity vr  are 
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where the vectors are restricted to the surfaces and g is the van der Waals force per mass at the film's 
surface. The solutions can be expressed in terms of scalar amplitudes η decomposed into azimuthal 
components associated with angular functions ( )φimexp . The scattered cylindrical Hankle function 
components of figure (1) are included along with the Hankle components of the imposed plane wave, 
taken to be traveling in the φ=0 direction on the top surface. The bridging cylinder has solutions 
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slope at the boundaries, and an exact result for the scattered wave components is straight-forward, but 
uninspiring. Our interest is in the limit of small contact size compared to the wavelength. The 
solutions can be expanded to lowest order in ka and kL. For a unit amplitude plane wave in this limit, 
the scattered wave components are: 
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where γ is Euler's constant. The incident plane wave induces equal 0=m  scattered components on 
both surfaces, and only significantly excites 0≠m  components on the opposite surface. Applying 
these results to the standing waves ( )kxcosη  and ( )kxsinη  yields radiated powers 

 
( )( )22

2
0

cos
)ln(2 γπ +−+

=
kakL

WW    and   ( ) kLekaWW 240
sin 2

−=   with  
232

0 2
⎟
⎠
⎞

⎜
⎝
⎛=

hk
hcW ηρπ  (4) 

respectively, and ghc = . The 0=m  adoption to the standing wave form requires careful 
consideration of the small ka and kL expansions.  The cosine wave, with an antinode at the position of 
the contact, radiates 0=m waves on both plates and the sine wave, with a line node traversing the 
contact, radiates an 1=m  wave on the opposite plate. These results constitute the basis of the 
scattering results that can now be used to analyze the properties of a small contact to the surface of a 
third sound resonator. 

3. Application to a resonator 
We shall now consider the situation where a third sound resonator has an active surface (part of the 
intended resonator) that is bridged to an inactive surface (not part of the intended resonator) by the 
previously discussed contact. There are two features of the contact that are relevant. First, the energy 
losses from equations (4) can be used to estimate inherent loss factor Q-1 of the contact. Second, the 
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induced wave amplitudes from equations (2) and (3) can be used to obtain the local superfluid flow at 
the contact.  

The position of the contact relative to the nodal structure of the resonator will determine the 
appropriate local amplitude to be used. The local height oscillation at the contact is what drives the 

0=m  radiated wave and the local flow oscillation past the contact is what drives the 1=m radiated 
wave. These quantities are dependent on the particular geometry of the resonator, but to keep the 
discussion as general as possible, we will take a square wavelength as the resonator area and a phase 
angle φ to characterize the position of the contact, with 0=φ  on an antinode and 2

πφ = on a node. The 
loss factor is then found to be 
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which, with equations (4), gives a simple expression for the loss associated with the contact in terms 
of the contact geometry and position. The factor of 2

1 on the cosine term results from an assumption 
that the 0=m  wave on the resonator surface does not contribute to any loss. Figures (2) and (3) show 
some values of this loss factor as a function of contact size ka.  
 

 

Figure 2. Loss factor for the m=0 case.  Figure 3. Loss factor for the m=1 case. 
 
The m = 0 losses are clearly the most offensive for all but the degenerate situation where the contact 
happens to lie on the node. This situation cannot be dismissed: in a resonator of high symmetry such 
as a circular resonator, it is possible that a degenerate mode would be split by the presence of the 
contact into modes with node and antinode orientations at the contact.  

Turning to the flow velocity at the contact point, the 0=m  case is the only one of interest. The 
1=m coupling assures the continuity of ambient film flow through the contact, and is therefore 

matching the local flow. The 0=m  induced flow is a new feature arising from the continuity of the 
surface profile at the contact. This induced flow can be quite large since the small contact is required 
to supply fluid necessary to distort the film profile with an extent much larger than the contact. This 
requirement, consistent with the equations of motion, is the origin of the logarithmic terms associated 
with the 0=m  Bessel functions of the second kind. The flow through the contact is found from 
equation (3) along with the asymptotic form of the corresponding Hankle function:    
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The last factor on the right is an enhancement ratio for comparison to the ambient wave film flow. 
Figure (4) shows this factor for the contact sizes of figures (2) and (3). It can be quite large, illustrating 
how small contacts are capable of generating large flow speeds. Note that such contacts are where the 
flow will first reach critical conditions.  
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Figure 4. Magnitude of the 
film flow enhancement ratio
term of equation (6). This is 
the ratio of the film flow 
velocity through the contact 
to that in the surrounding 
third sound wave. 

 
These results were for the case of a contact between an active surface and an inactive surface. If the 

contact is between two active surfaces of a resonator with different amplitudes or phases, there will be 
no radiative loss within the context of this analysis. The mode functions will be modified by terms 
similar to the radiative functions in the vicinity of the contact, but the energy is redirected within the 
mode. The flow amplitude at the contact, however, will include the same enhancement factor, but the 
amplitude term will be modified by the replacement 21 ηηη −→ , the complex amplitude difference. It 
is important to note that since the enhancement factor can be very large, small asymmetries in a face-
to-face closed resonator can be the source of unexpected super-critical flow if there is a contact.      

Although we have not performed a systematic experimental study, we have observed many cases 
of anomalously large damping, with Q in the range of 300 - 3000 in resonators shown by other means 
to have contacts. Such damping is consistent with even a single point contact of a size that might have 
been overlooked, such as a 10 µm particle touching between the resonator surface and the nearby 
capacitive electrode plate. These damping cases have always been accompanied by amplitude 
dependence at correspondingly small flow speeds confirming the presence of flow conc3entration. 

4. Conclusions 
We have presented results of a calculation describing the behavior of an idealized point contact 
bridging the gap between two surfaces supporting a third sound wave. The resultant damping is most 
egregious in the case of one active surface and is dominated by a driven flow across the bridge. Even 
very small contacts are capable of completely overwhelming other forms of dissipation in a typical 
resonator. We have also quantified the extent of the flow concentration at the contact, demonstrating 
how such contacts are capable of exceeding a critical flow condition well before that achieved by the 
ambient wave flow. Both effects depend primarily on the perimeter of the contact with only a weak 
dependence on the length. 
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