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Third sound: Where are the solitons?

F. M. Ellis and H. Luo
Department of Physics
Wesleyan University, Middletown, CT 06459

With nanometer thicknesses and millimeter wavelengths, third
sound is unquestionably in the long-wavelength limit of the
classical fluid-dynamic description. The validity of the linearized
form, successfully used for decades to predict the third sound
speed, depends on the size of the dispersive terms in that
description as well as on the amplitude. If the usual capillary
dispersion is used, most third sound measurements would be far
from linear and should consequently show a dramatically
amplitude dependent speed. @ We report measurements of the
frequency of a third sound resonator as a function of amplitude.
Although there are uncertainties about the possible role of several
dispersions, capillary dispersion appears to be negligibly small. A
direct measure of the dispersion from the frequencies of higher
resonant modes supports this.

1 INTRODUCTION

Third sound is a wave propagated in superfluid 4He films
analogous to long wavelength gravity waves in water. The Van
der Waals attraction of the helium atoms to the substrate
assumes the role of gravity. There is no question that third
sound in these films is in the long wave limit of hydrodynamics.
A typical wavelength is on the order of lcm where the typical
superfluid helium flm thickness is atomic in scale — several nm.
In fact, there are no other real systems which come close to this
degree of shallowness without significant attenuation. As the
amplitude of the wave disturbance increases, helium films should
thus display nonlinear effects appropriate to this extreme limit.
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These phenomena have been studied for years in water, yet the
sinusoidal, apparently linear behavior of third sound resonators
seems to contradict these expectations.!,3

To explore this one must first look at the behavior of thin
hydrodynamic films. Water waves are a natural place to start as
the literature is extensive.? The small amplitude, long wave
speed is ygh, where g is the constant acceleration of gravity and
h is the thickness. For larger amplitudes, a classic argument
by Airy points out that since the wave speed near a crest is
larger than the wave speed in a trough, the crests will eventuall
overtake the troughs and the leading edge of the cresis wﬂy]
steepen until the wave breaks. It was subsequently shown that
dispersive effects come to the rescue and allow steady waves
without change of form.  The dispersion comes from the
breakdown of the shallow water assumption since steep waves
imply short wavelengths. The resulting steady waves are the
cnoidal solutions characteristic of the Korteweg—de Vries equation.
These solutions at lon wavelengths are a periodic sequence of
humps with widths etermined by the balance between the
dispersive terms and the Airy stegg_en.ing. The hump widths
become independent of wavelength, effectively a geries of solitons.
Thus, even the long wavelength steady solutions involve short
wavelength components.

ow should third sound waves be different? First of all,

because of the form of the Van der Waals ipotentia.l, the effective
gravity is a strongly decreasing function of the thickness h.
addition to introducing new non linear terms into the equations of
motion, this makes the wave speed (again roughly Jﬁl;,
proportional to h-3/2 ) smaller for thicker films — opposite to that
in water waves. Second, there are other dispersive terms in the
equations of motion which can no longer be neglected. These can

be cast in the form

C? = ghk?(1+Ak?) (1)
to make comparison among terms simpler. The most important
term in long water waves is due to 2 correction for the vertical

acceleration of fluid resulting in A = - %-hﬂ. The generally

shorter wavelengths typical of third sound make surface tension
equally important, giving A = ~/pg, with 7 the surface tension
and p the fluid denmsity. These are the two dispersions usually
considered in treatments of third sound. Others will be discussed
in section 3.

Given a generic dispersion as above, simplified equations of
motion can be used to get a feel for the way the dispersion and
nonlinearities keep each other in check. Only terms to second
order in the amplitudes and lowest order in the dispersion are
included. The height dependent Van der Waals acceleration is
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linearized as g(q):go(1+oﬂ) with a=—4. Simple solutions are

possible in the extreme limits using standard techniques3. When
n/h>>Ak?, a soliton solution 7/h = Hysech2(kox) results with ko
and speed given by

ket = - FRH, and  C? = gh(I-AIEOH)) . (2)

Note that the orientation of the hump must be chosen so that k2
is positive and that the speed depends on the sign, but not the
magnitude of the dispersion term.  Careful consideration of
dispersion — wave breaking balance backs this up: the s¥eed is
always determined by the linear wave speed evaluated for the
hump’s depth or elevation and must be opposed to the dispersive
change for the shorter wavelength components of the hump. If

n/h<<Ak? then a Stokes expansion of the form
n1c08(kx—wt)+nscos(2kx—-2uwt)+... leads to
M= 320 (n/h)2 and
2
Co=gh{1- {310V (n,/n)2) . (3)

The illuminating point here is that the near resonant relation of
the second order mode to the non-linear terms applied to the first
order mode is responsible for the disturbing reciprocal terms of
Ak?2. The dispersion guarantees that w(2k)#2uw(k). If it were
absent, this expansion, and hence the linear regime altogether,
would not exist. It must be remembered that n/h<<1 in all
cases: the soliton form does not liberate one to apply the
solutions to large amplitudes.

2 EXPERIMENTS

There are two factors which determine whether, when all
terms are properly accounted for in the equations of motion, long
wave cnoidal type solutions will be experimentally relevant. Most
Important are the relative sizes of the nonlinear terms compared
to the dispersive terms as seen above. The second factor will help
clear up the apparent contradiction in linearized, non dispersive
shallow waves.  Supposing there was no dispersion, how long
would it take for the second order terms to grow? This can be
estimated by considering the time it would take for the fast part
of the wave to catch up to the slower part. In the case of third
sound, if the trough is faster than the crest by AC; then this
lime will be roughly when ACsr=A/2. But for third sound,

AC:'./C==—(g-.‘l‘uh/]:t) so that the steepening time is -r=3-é;(r;/h)'l ;

This can be made as long as ome wishes with a small enough
amplitude. ~ Experimentally this time, and hence minimum
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amplitude is limited by either an observation time or decay of the
wave. The latter is what makes the capillary range of shallow
water waves inaccessible. Thin films of normal liquids are heavily

damped.
2.1 Travelling Waves

Third sound pulses would seem to be ideal for soliton
observation. Amplitudes of several percent of the film thickness
are easily produced. Given the expected capillary dispersion and
mm wavelengths, Ak? is about 107 . Third sound pulses are
incredibly many orders of magnitude into the soliton regime, yet
only hints of non linear components have been observed.
Consider the time constraints stated above. An amplitude of six
percent of the film thickness results in a soliton separation in
about 100 widths of the pulse, much farther than typical
detection distances. The suggested fix for this is to generate
pulses with higher frequency components which results in a soliton
train to be observed as an averaged disturbance. Spatially, this
is no problem because of the relatively sharp edges of drive strips,
but temporally the production of "square well" initial conditions
is ruined by the diffusive nature of the substrate drives from
which the films receive their emergy. This temporal problem is
particularly bad for the expected "cold", slower solitons as they
trail the pulse and depend on the sharpness of the trailing edge of
the heat applied to the film. This is certainly prolonged by the
substrate diffusion.

The ideal amplitude for generating small numbers, or
perhaps one soliton at a more reasonable .lmm width (see eq. 2)
would require amplitudes with n/h=10 to 105, These
amplitudes are possible to observe but the separation distance
becomes more than 100 time longer than typical third sound
plates.  Accurate time of flight measurements of the small
velocity shifts would conversely extremely difficult on standard
sized plates.

2.2 Resonators

The need to measure these small velocity shifts motivated
the use of a third sound resonator. The resonator can be thought
of as a long flight path folded up on itself. The limit on
separation time is in this case intrinsic to the film given by the
transient decay time of the wave Q)/7Cs with Q the quality
factor. Thus one can also conclude that nonlinear effects wi
observable if 7/h>1/Q. Since Q’s fall in the range of 104 to 108
a the resonator is useful for detecting the non linear effects over a
wide range of amplitudes. Unlike pulsed time of flight
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experiments, a resonator is extremely sensitive to the small
velocity shifts and should be useful for the detection of non
linearity even at the lowest amplitudes.

It is important to first address the applicability of
travelling wave solutions similar to those discussed above to a
resonator. Korteweg DeVries solitons are able to pass through
each other unchanged (this surprising feature appears to be a
general property of a large class of non linear systems4) suggesting
that an appropriate resonant soliton solution would be equivalent
to two counter propagating trains of solitons truncated at the
boundary of the resonator where the solitons pass through each
other.  This qualitative behavior is easily observed in the
resonances of 1-2 cm of water in a square cake pan and we have
successfully tested this quantitatively where the hydrodynamics for
the travelling waves have been confirmed.

The frequency vs. amplitude information is obtained during
third sound resonance free decays. The circular resonator is
formed in the gap betwwn two microscope slides epoxied together
with an 8.6um gap. The flat surfaces are coated with evaporated
silver partitioned into electrodes used for driving and detecting
the helium thickness oscillations of the third sound modes
electrostatically. The resonant modes are Bessel functions and the
sensitivity of the pickup capacitor to the various modes is easily
calculated from its geometry. Results are presented in terms of
the mode amplitude 7, defined such that the film thickness
osci]latigt]t!s are ;.ssumed( to/be (mg)eos(u) (

r,$,t) = nIu(xar/a)cos(me)cos(wt) . 4
Only the SOwest angular mo&ges are considered, designated by m,
and x,=1.841, 3.054... divided by the radius of the resonator, a,
determine the wave number k.

A measurement is made by first driving the resonance up
with an A.C. voltage of up to 20Vpp. The drive is then turned
off and the amplitude and phase of the film oscillation are
followed through the decay using a lock-in amplifier whose
reference is fixed near the previously determined low amplitude
resonant frequency. The instantaneous resonant frequency is then
calculated from the rate of phase change. Fig.1 shows decay data
plotted as the frequency shift vs. a quadratic mode amplitude
scale. The scales have been normalized to the resonant frequency
and the static film thickness, in this case 212.03 Hz and 4.5nm
respectively. =~ The straight line indicates a frequency shift
proportional to square of the mode amplitude. Results for the
slopes b of all of the data taken were described within the scatter
by the empirical relation

b= g1+ ()2 (5)
with Cp=379m/s and kp=616m-t. The third sound speed ranged
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from 9.2m/s to 25m/s and at least the three lowest modes are
included in all but the highest third sound speeds where the
measurements are very difficult.
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Fig. 1
The relative frequency s]usft vs. amplitude for a 4.5nm film
at .05K . Note the quadratic amplitude scale.

3 DISPERSION

The results of the resonator shifts, when compared to
either of the forms (2) or (3) of the velocity are inconsistent with
the expected size of the non linearities. Since the resonator’s
transducers are completely electrostatic, there is no uncertainty
about the amplitudes as there is in bolometer third sound
pick-ups. We can turn this around and use the measured shifts
to estimate the size of Ak? from the slopes (5) These results are
represented in Fig. 2 as curve (a) along with several other
estimates of Ak? which represent the tranmsitions from n/h<<Ak?
to n/h>>Ak2. To the left of any particular curve is the linear
region and to the right is the soliton region. For all curves, k is
chosen to be k;=300m-f, the wave number of the lowest mode in
the resonator and the + or - sign refers to the sign of the
dispersion. The range of amplitudes and film thicknesses
investigated is also shown by the bracket above the amplitude
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n/h

Fig. 2
Estimates of various dislgersions are represented as curves
showing where the cross-over from linear (to the left) to
nonlinear (to the right) behavior would be. The curve
labels are referred to in the text. The bracket shows
typical third sound amplitudes

This result suggests that the dispersion in the resonator is
many orders of magnitude greater than and of opposite sign to
the capillary dispersion. We also measured the dispersion directl
through the frequencies of the higher modes up to the (11 1§
mode. These results are shown in Fig. 3 and plotted as curve (b
in Fig. 2. The number of modes measured drops down to two at
the high third sound speeds and three at the low contributing to
large errors at these ends. Note that the sign of this more direct
measure of dispersion is opposite to that indicated by the
frequency shifts, but still many orders of magnitude above the
capillary dispersion.

What could be responsible for these contradictions? Other
Possible sources of dispersions will now be discussed to help
answer this. The long wave (lg) and capillarity (d) dispersions
g\;i a.}ready been presented. Two thermomechanical dispersions

e form
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C? = C302+Cs?/(1+(wo/w)?) (7)
have their roots in the thermal relaxation rate wo of the film ‘o
the substrate or gas. In this expression, Cj is the fifth sound
speed. Curve (e) is for a film at 1.5K calculated by Bergmans.
Curve (f) is based on the assumption of wo/w<<1 from which the
relaxation and thus the dispersion can be cast in terms of the
measured Q.
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Fig. 3
Direct measure of the dispersion from the frequencies of up
to the lowest 11 modes. The error bars indicate the
uncertainty in the dispersion due to imperfections in the
resonator and weak modes.

The last forms of dispersion are geometrical in nature. If
there were a periodic modulation of the properties of the film
then a gap and associated dispersion would be present. Surface
roughness will have qualitatively the same effect — for wavelengths
much longer than the characteristic length scale of the roughness,
the similarity should be even better. The size of the dispersion
can thus be estimated a.sﬁmﬂI ~(Dafo) k)’ )

= Z[/Z 0
here Az/z is the relative modulation of the third sound
mechanical impedance and ko characterizes the roughness length
scale. Two curves are shown for this case, (g) for the expecied
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speed modulation for films adsorbed on a surface with 3nm
roughness amplitude and a 100nm length scale typical of
evaporated and annealed gold surfaces. The curve h) is an
cstimate for dirt particles with 100um separation and a Az/z due
to the local adsorption of film volume by capillarity.

Finally, there is an effective dispersion which a resonator
sould have if the modes are not harmonically related. Recall
.hat the key role of the dispersion was to shift the mode at 2k
away from resonance at 2w. Anything that shifts the modes away
from this relationship has the same effect. This "geometrical
dispersion" could be due to imperfections in the resonator or just
simply the geometry of the resonator. ~For comparison, one can
find the dispersion that would have the same effect as the
imperfection with

Ak? = Hko/kr2) 9)

where k; and k, are the wave numbers of the near-resonant
modes. Imperfections are always present. In a series of 5 nearly
identical resonators, what should be degenerate modes were always
split, typically less than one part per tiousand. This "dispersion"
shown as curve (i) could be of either sign.

By far the largest in the present case of the circular
resonator is simply the geometry of the Bessel modes. They are
not harmonically related. Curve (j) is for the (1,1) mode whose
non linear terms are nearly resonant with the (0,1) mode. These
geometrical dispersions would appear to make all resonators,
especially non rectangular ones, insensitive to intrinsic dispersions
in the t{lms. On the other hand, these same imperfections will
plague the travelling waves with substrate defects or deviations
from perfect plane waves in the case of third sound pulses
generated by drive strips of finite extent. We are presently
investigating the validity of these last points.

4 CONCLUSIONS

We have speculated about several possible dispersions
which should be taken into account for a realistic treatment of
soliton propagation in superfluid helium films. The ideal
dispersions  associated with surface temsion and vertical
acceleration, due to their extremely small size, are most likely
swamped by thermomechanical or geometric dispersions. If this is
true, helium films may not be as nonlinear as previously thought
and may explain the conspicuously absent nonlinear behavior
expected with only capillary dispersion. Experiments in a
rectangular resonator are planned, but imperfections will be
difficult to distinguish from dispersions.
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