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The frequency shifts of third sound resonances during free decay are observed
to have a quadratic dependence on the amplitude of the wave motion. An
unambiguous measurement of amplitude allows for quantitative comparisons
to predictions for the frequency shifts based on a variety of nonlinear influen-
ces acting within the superfluid *He film and resonator. Dispersive terms play
a minor role in this analysis. We conclude that nonlinear terms dictated by
a straight forward application of classical hydrodynamics are applicable to
superfluid helium films.

INTRODUCTION

One of the remarkable features of superfluid helium films is the ease
with which classical fluid mechanics can be adapted to the description of
the dynamics. Within the two fluid model, the normal component is
relatively inactive in a film, and the thermo-mechanical effects become
negligible at low temperatures. The primary dynamical feature is third
sound, the wave motion in films associated with longwave oscillatory dis-
placements of the superfluid.' Third sound is consequently sensitive to the
van der Waals attraction to the substrate, which acts as the restoring force,
and to the superfluid density and film thickness, which dictate the inertial
characteristics of the film’s motion. Because of the microscopic thickness of
the film, third sound is also easily within the longwave regime of the film
dynamics—wavelengths are typically a million times greater than the film
thickness.

This last point—the longwave regime—has been a source of incon-
sistency when the nonlinear aspects of the dynamics are considered. It is
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precisely the longwave regime that was expected to result in a nearly non-
dispersive wave, enhancing the effects of the non-linear components in the
mechanics. Soliton modes of propagation in superfluid “He films have been
predicted, >* based on the accepted hydrodynamic description of the films,
but so far have not been clearly identified experimentally®>™® in spite of this
extreme longwave, low dispersion limit. All of the related experimental
work in superfluids so far has been in the context of pulse propagation. It
is the purpose of this paper to address some of the non-linear aspects of the
dynamics with an experimental approach that is less ambiguous.

The source of the apparent inconsistency between the superfluid experi-
ments and theory are two-fold. First are uncertainties in the appropriate
dispersive influences acting in the longwave film. These have been discussed
previously.” Several possible dispersive sources were proposed and
estimated to be many orders of magnitude more influential than the tradi-
tional sources of surface tension and corrections to the longwave
approximation (the force dispersion and intrinsic dispersion of Ref 4).
Among the most likely candidates are geometrical imperfections due to sur-
face defects, unintentional deviations from rectangular wave geometry, or
wavelength-dependent thermo-mechanical coupling.

The second contribution is experimental. Experiments searching for
soliton-type behavior have involved third sound pulses which are inter-
preted in terms of many solitons as part of a train. A single soliton mode
has never been clearly identified, as is easily done in shallow water. Based
on traditional dispersions, the wave-length scale for solitons with ampli-
tudes detectable by present techniques is quite small, typically sub-micron.
It should be noted that there is an extensive body of literature related
to nonlinear wave propagation in water and plasmas that suggest better
techniques'’ for the interpretation of pulse-type third sound experiments.

We have taken a different approach by looking for non-linear influen-
ces in the more controlled environment of standing wave modes in a
resonator. Our analysis is adopted from the water wave literature pertinent
to resonant basins.'' For the same reasons that solutions to the nonlinear
equations of motion result in an amplitude-dependent wave speed, the
experimental third sound resonances display an amplitude-dependent fre-
quency. In a resonator, the wavelengths and frequencies form a discrete set,
and therefore they are inherently well-defined and simpler to detect and to
distinguish from the noise. In addition, because of the fairly high quality
factors (Q’s) at low amplitudes, extremely precise frequency measurements
of these shifts are possible.

In these experiments, the relation between the frequency shift and the
resonance amplitude can be followed over a wide range of amplitudes, from
highly nonlinear to well into what is usually considered the linear regime.
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Comparisons to the equations of motion can then be made in a limit where
the approximations (small amplitude) are verifiably valid, We first consider
the experimental aspects. These will indicate the level to which we need to
carry the theory.

EXPERIMENTAL

The critical features of this experiment are the ability first, to
accurately determine the amplitude and frequency of the third sound
resonance, and second, to allow high oscillation mode drive levels without
a significant DC heating contribution. Both of these goals are achieved
with a circular resonator having electrostatic transducers.

The circular geometry is useful in that film access into the resonant
space can be provided by a central hole with a minimal influence on the
resonant modes. The azimuthal symmetry (and the nature of Bessel func-
tions) allow for a rapidly diminishing intrusion of the hole upon the modes
as the azimuthal mode number increases. Electrostatic transducers provide
the amplitude accuracy and coupling efficiency. A traditional drive heater,
which couples to third sound modes via the thermo-mechanical effect,
delivers a DC heating on the order of 10° times larger than the AC power
delivered to the resonant mode.'? An electrostatic drive in principle will
deliver energy only in response to the macroscopic motion of the helium
dielectric. Similarly, an electrostatic pickup has a coupling to the wave
motion that is directly calculable through electrostatics, whereas a bolo-
metric detector has a sensitivity dependent on models of thermal coupling
of the film to the substrate.

A schematic of the resonator is shown in Fig. 1. The region supporting
the third sound resonance is formed by the surfaces in a 9.6 um gap
between two microscope slides. bounded by an epoxy filling in the gap
external to the perimeter of a 6.15 mm radius circle. The 0.3 mm diameter
hole pierces both plates along the axis of the circles. All of the inner sur-
faces are covered with approximately 200 nm of evaporated gold with the
exception of small strips on one plate that had been masked during the
evaporation and the epoxy perimeter. These serve to insulate sections of
the gold film from one another, thus forming the drive and pickup
capacitive electrodes with the opposite grounded plate. The outer surfaces
are coated with about 400 nm of evaporated silver providing both electrical
shielding and thermal contact to the glass plates. The resonator is spring-
loaded against the bottom of a dilution refrigerator within a small chamber
that includes a sintered silver film reservoir of approximately 20 m?.

The pickup electrode senses the wave motion through the changes in
capacitance associated with the flow of helium dielectric in and out of the
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Fig. 1. (a) Cross section of the third sound resonator. The region between the
plates and surrounded by epoxy forms the resonant cavity, Superfluid film
enters through the small hole on the central axis. (b) Schematic of the drive and
pickup electrodes evaporated in gold on the resonator’s inner surface.

pickup region. The electrode capacitance serves as the capacitor of an L-C
tunnel diode oscillator circuit that encodes the third sound displacement
oscillations as a frequency modulation on a 76 MHz carrier. This signal is
demodulated with room temperature electronics by phase locking the low
temperature oscillator to an HP8656B synthesizer. A feedback signal
required to accomplish this phase locking is then proportional to the third
sound oscillations. All room temperature electronics are calibrated by
known frequency modulations introduced into the reference synthesizer.
Our knowledge of the wave amplitude is then dependent on characterizing
the original L-C oscillator, ultimately determined by the inductance, the
pickup capacitor area exposed to the resonance, the stray capacitance, and
noise. The inductance and area are determined by room temperature
measurements, and the stray capacitance (and subsequently the gap) are
deduced by noting the frequency shift upon filling the resonator gap with
bulk liquid.

The linearized resonant modes that couple to the transducers are sym-
metric with respect to the top and bottom plate and have wavenumbers
given by k,,,=x,,,/a, where x,,, is defined through the Bessel function
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TABLE 1

Sensitivity of the Third Sound Resonator to the Modes Used in this Work. The Third and

Fourth Columns Show Frequency Modulations About the 76 MHz Detector Carricr. The

Third Column Lists the Response to the Given Mode Amplitude, and the Fourth Cites the
Response to the Given Drive Voltage on Resonance

Mode(m, n) Xy Hz for dhy=1 nm Hz witha | V drive
(1) 1.84118 150.2 9.6
(2, 1) 3.05424 1.4 6.4
(3, 1) 420119 834 2.6
(5,1) 6.41562 40.8 0.90

condition J, (x,, ,) =0 appropriate to the symmetric radial condition at the
perimeter, and where « is the radius. The pickup electrode couples to each
mode according to its overlap with the particular Bessel function involved.
Sensitivities of the pickup to the modes are shown in Table I as frequency
modulations in Hz of the 76 MHz carrier corresponding to a 1 nm mode
amplitude, (d/i,=1 nm) in the expression for the film’s surface elevation

h(r, 0, t)=hy+ ohoJ ,(k,, 1) cos(mb) cos(cak,, 1) (1

in which /, is the quiescent film thickness. Also shown are the calculated
modulation amplitudes on resonance for a 1V (peak) drive acting on
modes with a third sound speed of 10 m/s and Q = 10°. It should be noted
that at low amplitudes, where the linear theory is applicable, our measured
responses agree with calculated responses to within 10%. Noise levels in
the frequency modulation are typically 0.25 Hz within a | Hz bandwidth.

Film thicknesses are determined by the third sound speed ¢, and the
relation

ho—D 3k, T,
hy  mgh;

fi{hu}=

where m, is the helium mass and D = 0.526 nm accounts for the low tem-
perature inactive components of the film. The strength of the van der Waals
potential, T\, =41 K, was determined by an independent film thickness
measurement in another capacitor of evaporated gold in the same chamber.

The data acquisition procedure involves driving up a particular mode
to some high amplitude and then recording the amplitude and frequency of
the resonance signal as the mode decays away.

Before the drive-up, the low amplitude free decay frequency is verified.
This low amplitude value is used as the fixed reference frequency for an
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SR530 two phase lock-in amplifier. During the drive-up, higher amplitudes
are achieved by shifting the drive frequency by as much as a few tenths of
a Hertz lower than the linear resonance, closer to where the peaks of non-
Lorentzian high amplitude lineshapes are observed.

The drive is then turned off, and the two phases of the lock-in output
are recorded. With the lockin referenced to the fixed low amplitude
resonance, the two signal phases experience beats with the reference at high
amplitudes where the signal frequency is shifted. The beats can be inter-
preted as the components of the complex signal amplitude rotating at the
difference frequency between the free decay and the reference. Much atten-
tion is given to the gain and averaging time during the decay to ensure that
this signal is not distorted. Fortunately, the amplitude is large when there
is significant dynamical behavior in the signal (rapid beats and a relatively
fast decay), so little averaging is necessary, and as the signal decays toward
the noise, both the decay rate and the frequency difference beats become
compatible with a significantly longer averaging time. Data is taken at a
rate coupled to the lock-in averaging time.
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Fig. 2. In-phase and quadruture lock-in output channels during the free decay of a
third sound resonance (with m =2 and ¢, = 14.9 m/s). The vertical scale has been
converted Lo thickness amplitude components. Note that, for clarity, the time axis
is shown with a logarithmic scaling. Frequency deviations from the lock-in
reference show up as oscillations in the two channels.
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A plot of the lockin output data is shown in Fig. 2, scaled to give the
mode amplitude dk, using the calibration signal from the phase locked loop
synthesizer and the appropriate sensitivity from Table l. Note that the
oscillation cycles represent the frequency shift Af of the free decay resonance
from the reference fixed at the low amplitude value f;,, and the amplitude
represents the mode oscillation amplitude d/,. These quantities are ex{r;_icted
from the curves in Fig.2 and plotted as a relative frequency shift (Af/f,) vs.
the square of amplitude relative to the film thickness (d/i,/hy) in Fig. 3.

The decay in Fig. 3 proceeds from right to left on the graph. Note
the significant region of quadratic behavior (straight line on the graph)
extending into the low amplitude region at the left. All of the moc!cs that
we have observed display this quadratic region. The frequency shift data
can therefore be characterized by one number: the slope of the plots
analyzed as in Fig. 3. We shall call this slope f, defined where the free
decays are described by

(s o
Jo ho
The numbers § depend on the mode and the film thickness.
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Fig. 3. The data of Fig. 2 analyzed into both frequency shift and resonance mode amplitude.
The decay proceeds in time from right to left. The slope of the low amplitude limit of the data
is defined as f.
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Figure 4 summarizes the results for m=1, 2, 3 and 5 at several different
film thicknesses. Most of the measurements were made at a temperature of
0.06 K. No temperature dependence in the values for f was observed up to
0.3 K in spite of a reduction in the resonance Q of typically more than a
factor of two in this range. The error bars represent our estimate for the
uncertainty in the values based on our uncertainty in the film thickness and
the variability of the calibration value. Calibrations were performed before
and after a set of decays and most likely owe their variation to changes in
the DC state of the phase locked loop. These values of f are the only
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Fig. 4. Values of /i determined for a variety of film thicknesses and

modes. The solid line shows the theoretical prediction. The vertical scale
in all plots is fixed for comparison.
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feature of the decays to which the theory will be compared, with the
assumption that the observed quadratic behavior is the lowest amplitude
manifestation of the nonlinear fluid mechanics in the film.

THEORY

Our basic equations for the film come from the standard two-fluid
model:'? the equation of continuity,

oh .
3= —div[(h=D)y] (4)

and the dynamical equation,

%+(v-grad)v= —(—;i—:rgradh (5)
The symbol s denotes the film thickness; v, the superfluid velocity field; and
U, the van der Waals potential energy per atom (divided by the mass of a
helium atom). In effect, superfluid flows only in a layer sandwiched
between a healing length at the top of the film and another healing length

_immediately above the frozen first atomic layer. The constant D, taken to

be 1.47 atomic layers, represents the healing lengths and the frozen layer.
The experiments were done at temperatures of order 0.1 K, where a tem-
perature gradient in the dynamical equation should be negligible and hence
is omitted. Moreover, the experimental values of showed no variation with
temperature over the experimental temperature range.

Dimensionless variables make the computation easier, and so we
introduce a set of them. Let /&, denote the thickness of the quiescent [ilm.
The third sound speed c; is given by

dU
C% = b;lu -f?;; : {(J]
where b, defined by
hy—D
— 1
& hy ()

incorporates the effect of the inactive layers. We write

h=hy+ahyn (8)
v=%au (9)
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The scaling constant « represents the maximum wave amplitude divided
by hy; the function #(r, 0, t) is a dimensionless wave amplitude (whose
magnitude is of order unity); and u is a dimensionless velocity field. The
standard van der Waals potential energy U(h) varies with & as & —* for films
of our thickness. We write
h
JG) 0

h !
e = 1
f(ho) (ho) H
When we rewrite Eqs. (4) and (5), we measure length in units of the cell

radius @ and time in units of a travel time for third sound: a/c,. The out-
come is the following pair of equations:

dU(h) 5{9
dh  dh

where

an . x

‘a—;— ”dl\"[(]+5q)ﬂ:| (12}
LI 1 d 13
3 g e (u-u)—f(1+an)grad n (13)

The irrotational character of the superfluid velocity permits us to re-express
the advective derivative in terms of a pure gradient.

The theoretical goal is to extract from Egs. (12) and (13) a frequency
shift that is proportional to . Two papers by John Miles (Refs. 11 and 14)
provided inspiration and guidance. Following Miles, we expand # and u in
terms of the film's normal modes, that is, in terms of the solutions to the
linearized forms of Egs. (12) and (13). Thus we write

n=Y n.t)¥,(r,0), (14)
u=Y ¢,(0) U,r,0) (15)

where
U,=w, 'grad y, (16)

The symbol w, denotes the (dimensionless) eigenfrequency of the linearized
theory. The set of frequencies {w,} includes the set {x,,,} of TableI but
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in a compressed and different notation. The eigenfunctions y,, are con-
structed to be orthonormal, and so are the basis vectors U,,.

The construction of the normal modes requires, however, a specilica-
tion of boundary conditions. The reflection symmetry of the experimental
cell (top and bottom) strongly suggests that no fluid runs from one face to
the other, and so

r-U,J|,.,=0 (17)

is required at the outer radius. If we mentally paper over the tiny central
hole in each face, then that boundary condition suffices. We will find,
however, that we need to acknowledge the hole. When we do so, we will
need to use the normal modes of a larger system: cell plus exterior.
Computing those modes, even in an approximate fashion, is a subtle matter
and will be given its proper discussion later.

To give a concrete example of an eigenfunction, let us first cover up
the hole; then an example is

Y,(r,0)=N,J,, (w,r) cos(m,0) (18)

where the integer m, specifies the azimuthal dependence and N, is a nor-
malization constant. Each such function with a cosine azimuthal dependence
is paired with a similar function that has a sine dependence. The mode
whose frequency shift is being investigated will be designated by the sub-
script 1 and is one member of the “primary pair.” The partner in the
primary pair is denoted by subscript 2. (Thus the numerical values ol m,
and m, are equal. For the mode described in the experimental section as
the “(5, 1)" mode, the values are m, =m,=35.)

Most of the ensuing algebra is best left to a computer; we used the
symbolic manipulation software Mathematica®. Here we merely oulline
the method verbally and then present results, both analytic and numerical.
The method itself is independent of the particulars of the normal modes;
those specific details affect only the numerical outcome.

We substitute the forms for # and u from Egs.(14) and (15) into
Eqgs. (12) and (13), expand the function /(1 +an) through order «?, multi-
ply Eq.(12) by ¢, and take the scalar product of Eq.(13) with U,, and
finally integrate over the film area (a disk or a model of cell plus exterior).
The operations project out equations for #, and ¢,, where the dot denotes
differentiation with respect to time.

One can solve the projected version of Eq. (12) iteratively for ¢, as a
power series in a with coefficients dependent on the set {#,, 4,}. We work
through order «’. Then we use the series to replace all occurrences of ¢,
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and ¢; in the projected version of Eq. (13) in terms of #; and #,. Symboli-
cally, projection from Eq. (13) generates the set of equations

Fl'({’?m ?im ’?n}}=0 (19]

where each F, denotes a known but lengthy function.

We follow Miles in adopting forms for the coefficients #,. Let n=1
and i, denote the low-amplitude limit of the actual large-amplitude wave.
We write

(1) = p,(t) cos(@t) + q,(7) sin(@r) (20)
where
T=ja’t (21)

The waves of the linearized limit come in cosine and sine pairs, as noted in
conjunction with Eq. (18). Ideally, the two modes are degenerate in
frequency, but experimental imperfections produce a geometric splitting
(fractionally, of order 10~? to 10 ~*). The symbol @& denotes the mean of the
split frequencies. If there were no nonlinear interactions (and no geometric
splitting), then the functions p, and g, would be constant in time. In
reality, p, and ¢, vary slowly with time; the desired frequency shift will
appear as part of that slow variation. A form similar to that in Eq. (20)
holds for the other mode in the primary pair, which we enumerate with
n=2,

The nonlinear terms in Egs.(12) and (13) will generate secondary
waves with azimuthal dependence like cos(2m,#) and cos(zero) and also
time dependence like cos(2@mr) and cos(zero). For the secondary modes
that are thus excited by the primary mode #,\,, we take the form

n,=al A, cos(2mt) + B, sin(2at) + C, ] (22)

The computer solves the secondary equations in Eq. (19) for the coef-
ficients {4, B,, C,} of the secondary modes, expressing those coefficients
in terms of the set {p,, ¢,}. Then the program substitutes those “known”
coefficients into the primary equations in Eq. (19) and extracts differential
equations for the set of functions {p,, ¢,}. The outcome has an algebraic
structure that can be expressed succinctly. Let

”;.=Fn+ff?n (23)

for the primary modes, n=1 and 2. Then the nonlinear differential equa-
tions are these:
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%=3Mrg+iAErl——fCr, (24)
d" 2 3 .
= —BMr, +iAEr, + ilr, (25)

The constant { is proportional to the geometric splitting. The functions £
and M are defined by

2
E=E,+E,= Y 3(pl+ql) (26)

n=1

and

M=p,q,—p>q, (27)

The energy and angular momentum of the wave have expansions in powers
of a. The functions E and M are proportional to the terms of lowest order
(that is, order «?) in those series, respectively. The function E is a constant
of the motion for Egs. (24) and (25); in the absence of geometric splitting,
the function M would also be a constant of the motion. The numerical
constants A and B are provided by the computer program.

If only one of the primary modes is excited, then the angular momen-
tum M is zero and remains so. The solution of Eq. (24) is then

n(t) =p,(0) cos{[ &+ ({ — AE) 30’11} (28)

provided one sets the clock so that g,(0)=0. A [requency shilt propor-
tional to —0.54E«* emerges plainly. Indeed, from the definition of f# and
from Egs. (8), (14), (18), and (28), one finds

A

 4aN? e

f=

The foregoing paragraphs lay out the theoretical framework. Whal
remains to be done is to insert specific normal modes and to work out the
numerical results. Here we present an outline of the next two subsections
and the two appendices.

In the subsection “Results for the disk,” we suppress the possibility that
fluid may move through the central hole and consider the normal modes for
a film on a disk. (Our original hope—if not expectation—was that this model
would suffice.) We describe a check on the computer coding, present some
numerical results (based on the van der Waals restoring force), and explain
(in part) why the theoretical results disagree with experiment.
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In the subsection “Results for the annulus,” we allow fluid to move
through the hole in dynamic response to the oscillations in the cell. We
describe a geometric model of cell plus exterior (but leave the details of the
normal modes to Appendix A). The numerical results are summarized by
the theoretical lines in Fig. 4.

In Appendix B, entitled “Analysis by Bernoulli’s principle,” we provide
a more intuitive understanding of why the average film thickness in the cell
changes and how that change shifts the frequency.

Our conclusions are presented after the subsection “Results for the
annulus.”

Results for the Disk. 1If we mentally paper over the central hole, then
we can readily check the present calculation against Miles's results for
gravity waves on water. We need only set b=1 and take f(1 +ay)=
J(1)=1, a constant restoring force. In the limit of vanishing water depth,
Miles’s results imply = —0.132 when m, = 1; the route via Mathematica
concurs.

Next, we restore the variation with height of the van der Waals attrac-
tion and expand f(1+ay) through order a?:

(1 +an) =1 —4ay + 10ay? (30)

Also, we restore the influence of the inactive layers. For m, =1 and
¢3 =10 m/s, the computer program implies #= +0.012, wildly at variance
with the experimental result that all £’s are negative. Moreover, the “wrong
sign” outcome persists for higher values of m,, and it is not a consequence
of our including too few modes. [ Typically, we compute with the pair of
primary modes (and their first Bessel functions), the pair of modes with
azimuthal dependence 2m 6 (and their first Bessel functions), and the
lowest three axisymmetric modes. ]

A look at Egs. (13) and (30) reveals a source of the discrepancy. As
the coefficient of grad #, the function f(1 + azy) plays the role of a variable
“spring constant.” The term in + 10a?y? clearly hardens the spring and
hence tends to increase the oscillation frequency; that is, the term con-
tributes positively to . The effect of the term in —4os cannot be assessed
by inspection, for # changes sign periodically, and the sign of some
appropriate mean value is not obvious (at least, not to us). Numerical test,
however, shows that the term in —day softens the spring. The net effect of
the two terms, however, is dominated by the term + 10a’y> Thus, in this
case, the curvature of the van der Waals force (as a function of height)
dominates over the slope.

Confronted with such disagreement over the sign of f, we conclude
that we must acknowledge the central hole and explore its implications.

A
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Results for the Annulus. 1f helium flows into the cell in response to a
growing amplitude of oscillation, then the time-averaged film lhickm‘:ss ‘_wll
become greater, the average van der Waals force will be less, the oscillation
frequency will drop, and f will be negative. That is a plausible scenario, but
how should one approach it theoretically? o

In principle, one should calculate the normal modes of the entire inter-
connected system: cell, holes, helium reservoir, and associated cnpl_llary
tubes. Clearly, that is impossible. A tractable model can be based on Fig. 1.
A “cell” annulus (representing one face of the cell's interior) is connected
to a short hollow cylinder that, in turn, is connected to a large “cxler_iur"
annulus (representing one half of the exterior). The boundary conditions
are that the radial component of the fluid velocity must vanish at the outer
edge of each annulus. The radius of the exterior annulus is 7., whlic!! is
much larger than the unit value of the cell’s outer radius. For the cylinder,
the ratio of length to radius is 7.5.

For all practical purposes, the modes of the original disk with m#0
remain confined to the cell annulus. Any such mode is a superposition of
circulating waves, and a centrifugal effect keeps the bulk of the mode out
of the hollow cylinder. [ Within the cylinder, the wave amplitude dnrps
exponentially with an e-folding length of (hole radius)/m.] The eigenfre-
quencies change extremely little (fractionally, of order 10 7 or less), _aml
the eigenfunctions change little also [because the regular Bessel i‘uuclmn_s
J,(er) already vanish at the origin]. Only for the axisymmetric modes is
there substantial change. _

Appendix A outlines the methods that we used to compute the axisym-
metric modes of the model system. Here we present merely certain results.

For the disk (that is, for the cell when the hole is “covered™), the first
and second significant axisymmetric modes have frequencies of = 3.832
and 7.016, respectively. (The perfectly flat mode has w=0 and is not
dynamically significant,) In the model, the frequencies of the first and
second disk modes shift upward by only 3 percent and | percent, respec-
tively, and so the shapes of the modes (within the cell) change hardly at
all.

The striking result is that an entirely new dynamically-signiﬁca‘nl
axisymmetric mode arises. Its frequency is @=0.35. Within the cell. its
profile is approximately that of a quarter-circle: a nearly vertical tangent at
the edge of the hole and a horizontal tangent at the outer edge of lh_c
annulus. At the edge of the hole, the wave height is 79 percent of the maxi-
mum that the wave achieves at the outer edge. Thus, when this secondary
mode is driven by the primary mode, its DC portion will raise the average
level of the helium in the cell (an average taken in both time and spacc).
That will reduce the average van der Waals force, causing the oscillation
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frequency of the dominant mode to drop; consequently, the interaction of
the modes will make a negative contribution to f. The detailed computa-
tions bear out this qualitative expectation, as Fig. 4 shows.

A rigorous and explicit derivation of the rise in the average film thick-
ness is presented in Appendix B. The appendix complements both the
preceding paragraph and also the numerical analysis that is based on the
perturbation theory in Egs. (19) to (30).

CONCLUSIONS

We have experimentally determined nonlinear behavior by observing
an unambiguous quadratic dependence of the resonance frequency shifts
upon amplitude. As a function of film thickness, the results of Fig. 4 show
a systematic deviation between theory and experiment, particularly with
the m =1 mode in the thinner films. Nonetheless, the extent of agreement
is significant, as we reason in the following paragraphs.

Several nonlinear terms in Eqs. (12) and (13) contribute to f: the term
in div(zu); the term in grad(u-u); and two terms from the expansion of
f(1+ay), as displayed in Eq. (30). Numerical investigation tells us that, if
either of the terms from f(1 + an) were to be omitted, the prediction for f
would fall well outside the experimental range. The contributions of those
two terms are, in fact, delicately balanced and nearly cancel each other.
Moreover, their contributions turn out to be independent of each other’s
presence in the equations. In a sense, the bulk of the net value of ff comes
from the terms in div(yu) and grad(u-u), acting together. Such details are
not important in themselves, but they indicate that the net frequency shift
arises as the collective effect of several nonlinear terms.

The individual terms in the theory make contributions Af that span
the range —0.25<Aff<0.25. Thus 0.5 sets the scale for comparison
between theory and experiment. In general, theory and experiment agree
within 10% of that scale. The sole exception is the m=1 mode above
20 m/s, where the deviation climbs to 30%. The trend toward positive
movement of f with both increasing m and increasing film thickness is
clearly present in both theory and data. From all this evidence we infer that
a straight forward application of classical hydrodynamics accounts for the
bulk of the nonlinear influences within the film.

This result is significant in that we have justified the use of these non-
linear terms in an experimental situation in which the dispersive nature of
the superfluid film is inconsequential. Previous treatments, both experimen-
tal and theoretical, have been within the context of solitary waves, where
the nonlinear behavior is equally influenced by dispersion. Our insensitivity
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to dispersion is a result of the mode structure of the circular resonator. The
near perfect 2:1 simultaneous resonances in both k and @ characteristic of
rectangular, or plane waves, are avoided.

We have also brought to light the importance of the low frequency
mode structure of the third sound geometry. As shown, the film in the
vicinity of third sound wave activity may be thickened to an extent deter-
mined by this mode structure, ranging from a completely isolated resonator
in which there is no such mode, to a resonator that is free to exchange
helium with an infinite reservoir. Both the relative sizes of the film regions
and the geometry of the flow connections influence this mode structure. In
the case of pulsed third sound, the localized nature of the wave excitation
(as opposed to the infinite plane wave pulse) will include both linear and
nonlinear coupling to any extended modes of the experimental geometry.
This coupling must be considered as a possible contributing factor to the
complex behavior observed following third sound pulses.

APPENDIX A: NORMAL MODES

In this appendix, we outline the methods that we used to compute the
axisymmetric modes of the model system. The calculation proceeds in two
stages, as follows.

Stage 1. Temporarily, we ignore the boundary condition at r=r,,
and take r., to be extremely large. We look for the resonances of this
system by sending inward (on the exterior annulus) an axisymmetric wave
of frequency w and requiring an outgoing wave of equal amplitude bul
perhaps shifted in phase. Thus, on the exterior annulus, we represent the
film height by

Ve = Re{ [ H{ (wr) + e H{ (wr)] e "} (A1)

where the radial dependence is expressed by Hankel functions and ¢ is an
adjustable phase constant. A function ., must match with ., in value
and slope at the exterior end of the hollow cylinder. Simultancously. a
function V., must match with ¢, at the hole and must meet the boundary
condition at r= 1. The latter function is

Ve =Re {Aceli I:-fu{w?'] = Jl:{w) Yu(ﬂ”']] e w} (A2)
Yi(w)

where A, is an adjustable (possibly complex) constant.
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We vary the frequency w and so produce the resonance graph shown
in Fig. 5. The new mode at w =~ 0.35 stands out dramatically. At the reso-
nant peaks, one finds exp(ig)= —1 to good accuracy, and so the combina-
tion of Hankel functions in Eq. (Al) reduces approximately to —2i¥o(wr).
This information and Fig. 5 enable us to construct approximate normal
modes of the model system. The nth such mode has the representation (in
the respective regions)

j;l.cnll
'qu(f's U} =~ NOl'mC,, X .f;u.cyl (A3)

f!x.eht = Sn Yﬂ(wur)

The function f, .., is proportional to the r-dependent factor in Yoy as
displayed in Eq. (A2) and is normalized to unity over the cell annulus. The
height of the resonance in Fig. 5 then enables us to determine the numer-
ical value of the scaling constant S,. The overall normalization constant
NormC, is determined by requiring that the integral of |\, |2, taken over
the entire model area, be unity. Provided 7., > 1, the integral is dominated
by the integral of (S,Y,)? and that integral is asymptotically equal to
20 'S2r . Thus NormC, is proportional to /2.
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Fig. 5. The resonant response of the cell amplitude A, as a lunction of frequency.
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We have not yet incorporated the boundary condition at r=r,,,. The
asymptotic form of a more accurate expression for i,,, will be

12
Jou 8, (%) sin(wr + phase) (A4)

The boundary condition requires that df,,,/dr =0 at r=r,,. If this condi-
tion is met for one value of w, then it will be met also by values of « that
differ additively by +n/r., (provided that the term “phase” varies little
with @). The quotient #/r.,, is a very small number. Consequently, under
a resonance such as any of the three displayed in Fig. 5, there will be a dis-
crete sequence of normal modes. The “density of states” d$Q/dw for the
modes is

dQ  req

do = (A5)
Thus the model provides not a single mode for each resonance but a
set of modes. The frequencies differ by little, however, and the wave shapes
within the cell, that is, the functions f, .., differ hardly at all. For the sake
of computing f, we may collect together all the discrete modes under a
specific resonance. Whenever a sum over secondary modes is called for, we
may handle the axisymmetric modes by summing over the resonances,
using at each resonance the discrete mode with the maximum cell
amplitude and incorporating the effect of the subsidiary modes by multi-
plying by an effective number of modes, effN,,;, ... We estimate the latter
by

eIV e = 2 FWHM, . = "ﬂ x FWHM g, . (AG)

ithres — dw

where FWHM,;, ... denotes the full width at half maximum of the ith
resonance shown in Fig. 5.

Detailed inspection of the procedures discussed in the paragraphs
following Eq. (18) shows that f depends on NormC,, and effN,,,, .. through
the combination (NormC,)? x effN,, .. only. (Here NormC, is the nor-
malization constant for the discrete mode with maximum amplitude in the
ith resonance.) Because NormC, is proportional to r_/'?, the essential
combination of factors is independent of r,,. That is gratifying, for once
the exterior is large relative to the cell, then precisely how large it is should
not matter.
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Stage 2. 'To confirm the conclusions of the preceding analysis and to
refine the estimates of effN,,, ., we imposed the boundary condition at
r=rg, exactly and computed numerically the spectrum of normal modes
when r,,, = 1000. The densities of states agree with Eq. (AS5) to within one
percent. We could assess effN,,, .. by summing over the modes under a
resonance, weighting each mode by the square of its NormC (normalized
by the NormC for the mode at the peak). This assessment of effN,,, ., is
15 to 20 percent smaller than the stage 1 assessment, and we used the
better (and smaller) values. The normalization constant NormC,, is propor-
tional to the height of the resonance; the stage 1 and stage 2 assessments
of the resonance height agree to within one percent for all three resonances.
In short, the methods agree well, and all differences have little effect on the
theoretical value of £.

APPENDIX B: ANALYSIS BY BERNOULLI’S PRINCIPLE

Bernoulli’s principle, suitably generalized to a temporally periodic
system, enables one to derive the increase in the average film thickness
within the cell. Under the specification that the fluid is irrotational, Eq. (5)
can be written as

1
aa_:= —Egrad v? —grad U(h) (B1)

Averaging over one period of the periodic motion reduces the left hand side
to zero. Thus

3 +(Uh)> = C, (B2)

where the angular brackets denote a temporal average and where C, is a
constant (in both space and time). This expression is the generalized
Bernoulli’s principle.

The next objective is to extract {n) ;..s > the thickness variation
when averaged over both time and the cell. To that end, expand the poten-
tial U(h) through second order in a/iyn and use the notation of Egs. (6) to
(9), finding that Eq. (B2) becomes

U"(hy)hy

l 2
— | {u*> +b T (o)

A <'?2>J+a_'<f?>=cz (B3)

where C, is a new constant,

!
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i
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i
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The temporal average () must be of order a because the part of 5
that is of order a’ is purely oscillatory. Thus, to determine a ~'{(y, it
suffices to know the other quantities in Eq. (B3) to order . In particular,
the terms in (#*) and (#*) need be used in order o’ only.

To determine the constant C,, integrate Eq. (B3) over the entire film
area—cell, hollow cylinder, and exterior—and invoke conservation of {luid,
which requires the integral of  over the entire area to be zero. Let G(x)
denote the expression in square brackets in Eq.(B3), together with its
prefactor, but evaluated to order «° only, that is, evaluated with just the
dominant mode. Because the dominant mode is restricted to the cell, G(x)
is non-zero only inside the cell. Thus spatial integration of Eq. (B3) over
the entire area yields

Co=[ GdAld (B4)
cell
where 4, denotes the total area of cell, cylinder, and exterior.
Now return to Eq.(B3) and integrate over the cell only. Using
Eg. (B4) as well, one finds

XCH? ) &m0, time & cel U"(ho) ho| _ Aot — Acen
+ = — - L l
<’l’>um=&cell 2b +b U’(ku] X Amlm

(B3)

Here A, denotes the cell area. In lowest order, the dominant mode is like
an harmonic oscillator, and so the averages of «* and #? are equal in order
a’; this enables one to replace the u* average by the #* average.

By Egs. (10) and (11), the expression in square brackets in Eq. (BS) is
[1—4b]. Because b > 0.8 for our films, the expression [ 1 —4h] is negative,
and 50 {77) ime & cen 15 POsitive. On average, the film in the cell has become
thicker.

For the relative frequency shift, we can argue loosely as follows. The
frequency w will have the form

= (geometric factor) x ¢4 /a (B6)

The revised third sound speed (squared) is given by

hdU
izb(——
€ (dh )

Expanding to first order in « and then taking a square root give the revised
speed:

(B7)

Trg =+ D2 o Dtime & ool

CJ;(I—%C"(J?)lim:&cc}lJxc]|m=(l (BRJ
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The relative frequency shift follows now from Egs. (B6, B8, & B5) as

Aw
;; Fi“(‘q)lime&czll

— 2 Ch=h0)*) time & cen
T 4 h}

(B9)

In basic structure, sign, and order of magnitude, this expression
corroborates the result from the detailed analysis.
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