
Oscillatory Gap Damping

Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: 1) Find the
motion in a gap due to an oscillating external force;  2) Recast the solution in terms of an effective lateral
bulk drag term; 3) Solve the Fourier-periodic solution driven by an equivalent uniform mass source.

1) Here's the solution for oscillatory flow in a gap driven by an externally applied force: g
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For large drag (δ), the velocity is in phase with the force.  Small drag has the velocity lagging the force by
π/2 phase.

2) Now get the average velocity:
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Describe by a bulk drag coefficient b
(drag force per mass)  
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The imaginary part reduces the average equivalent flow by removing δ from the undamped flow.
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Wave Propagating into the Gap

Now consider a 1D compressible wave propagation into in a narrow gap... ei k x⋅ ω t⋅−( )⋅
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3) Finally, drive the motion by an equivalent mass influx uniformly distributed in the gap.

Rectangular Flow-Driven Gap

Gap oscillating as g t( ) g 1 η x( ) e i− ω⋅ t⋅
⋅+( )⋅=    η x( ) η0=  in the gap 

Convert the oscillating gap to a fixed gap with an equivalent oscillatory gas source.
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The driven solution with the source = 0 and the pressure =0 at the gap boundaries will be a Fourier series
that is constant in the gap and opposite just outside the gap, periodically reversing for the Fourier series...
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Check out the case of b=0 for getting our bearings...
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Force per length on the plate...

F 2
0

L

2
xP x( )

⌠
⎮
⎮
⌡

d⋅= 8 L⋅ η0⋅ ω
2

⋅ ρ⋅ c2
⋅

n odd=( )

1

n π⋅( )2 c2 n π⋅

L
⎛⎜
⎝

⎞
⎠

2
⋅ ω

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

∑⋅=

F ω( )
8 L⋅ η0⋅ ρ⋅ c2

⋅

π
2

ν
2

⋅

n odd=( )

1

n2 n2
ν

2
−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

∑⋅=
ν

ω L⋅
π c⋅

= ω
π c⋅ ν⋅

L
=



n 1 3, 100..:= R ν( ) ν
2

n

1

n2 n2
ν

2
−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

∑⋅:=

ν 0 .052875, 4..:=

0 1 2 3 4
10−

5−

0

5

10

R ν( )

ν

At low frequencies, the gas flows into the gap for positive η. As the first resonance is approached, the
amplitude of the gas in-flow increases, resulting in the positive pressure-to-η phase relation.  After the
resonance, the phase is reversed.  This negative phase relation  is what would be expected for trapped
gas indergoing rarefaction (negative pressure) with increasing ν.

Now include the damping term b...
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Force per length on the plate...
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This is the force with viscous loss, behaving the same as the b=0 case, but now with the imaginary part.

The real part of the scaled force is opposite to the displacement for our situation (around ν=2. This is an
extra restoring force due to the gas compression. The averagy loss comes from the positive imaginary
part of the force:

p 0.01 0.02, 1..:=

Effective Mass f M− ω
2

⋅ x⋅=



8 L⋅ w⋅ η0⋅ ρ⋅ c2
⋅

π
2

Re H ν0 ν, ( )( )⋅ M− ω
2

⋅ g⋅ η⋅=

M
8 L3

⋅ w⋅ ρ⋅

π
4 g⋅

−
Re H ν0 ν, ( )( )

ν
2

⋅=

μ p( )
8 L3

⋅ w⋅ ρ p( )⋅

π
4 g⋅ Mp⋅

− ν0
2 γ p( )⋅ L⋅

π c p( )⋅ ρ p( )⋅ g2
⋅

←

ν
ω L⋅

π c p( )⋅
←

Re H ν0 ν, ( )( )
ν

2

⋅:=

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

μ p( )

p

Damping

F
8 L⋅ w⋅ η0⋅ ρ⋅ c2

⋅

π
2

H ν( )⋅=

W
1
2

− Re F v
⎯

⋅( )⋅=
1
2

− Re F i− ω⋅ η0⋅ g⋅( )
⎯

⋅⎡⎣ ⎤⎦⋅=
1
2

ω⋅ η0⋅ g⋅ Im F( )⋅=

E 2
1
2

⋅ Mp⋅ ω g⋅ η0⋅( )2⋅=



Q ω
E
W

⋅= ω

2
1
2

⋅ Mp⋅ ω g⋅ η0⋅( )2⋅

1
2

ω⋅ η0⋅ g⋅ Im
8 L⋅ w⋅ η0⋅ ρ⋅ c2

⋅

π
2

H ν( )⋅
⎛
⎜
⎜
⎝

⎞

⎠
⋅

⋅=
π

4 g⋅ Mp⋅

4 w⋅ ρ⋅ L3
⋅

ν
2

Im H ν( )( )
⋅=

Q p( )
π

4 g⋅ Mp⋅

4 w⋅ ρ p( )⋅ L3
⋅

ν0
2 γ p( )⋅ L⋅

π c p( )⋅ ρ p( )⋅ g2
⋅

←

ν
ω L⋅

π c p( )⋅
←

ν
2

Im H ν0 ν, ( )( )

⋅:=

0.01 0.1 1
10

100

1 103×

1 104×

1 105×

Q p( )

p


