
Third Sound Equations of Motion (MKS units)
Last checked and corrected -- 07/20/09

This worksheet decsribes the equations of motion along the lines of Bergman's original paper with a few
simplifications appropriate for low temperatures (roughly T<0.5): (1) The normal component velocity is set
to zero; (2) The substrate and vapor are taken as thermal reservoirs with no internal dynamics; and (3)
The vapor interactions are taken to be purely ballistic with a 100% accomodation coefficient. An
additional term demonstrating the gain associated with stimulated condensation is also included.

See Bergman's papers for the complete adaption of the two fluid model to third sound:

"Hydrodynamics and Third Sound in Thin HeII Films
D. Bergman, Phys. Rev. 188, 370 (1969)

"Third Sound in Superfluid Films of Arbitrary Thickness", 
D. J. Bergman, Phys. Rev. A3, 2058 (1971)

Physical Constants

h 1.05457168 10 34−
⋅:= m 6.646 10 27−

⋅:= k 1.380650510 23−
⋅:=

substrate van der Waals strength Tv 40:=

liquid density ρ 145.1397:= monolayer thickness h1
m
ρ

⎛⎜
⎝

⎞
⎠

1

3
:=

latent heat of vaporization L0 7.196:=

Physical Constants

Variables and Parameters Used

h static film thickness

η surface displacement

ρ bulk helium density

ρs effective ground state mass density on the film

v superfluid film flow velocity

Jm mass flux into film from vapor

g van der Waals acceleration of a free atom at the height of the surface



T τ S C film temperature, temperature oscillations, entropy, heat cap per mass 

S
⎯

partial entropy per mass S
⎯ δ

δh
h S⋅( )=

L latent heat per mass

K film to substrate thermal contact parameter (Kapitza conductance)

σ lateral conductance

Φ ideal gas equilibrium particle flux

Φnet net particle flux due to stimulated condensation vapor source

Minimal Third Sound

The essence of third sound is identical to long-length ocean waves (tidal waves). The basic equations of
motion express conservation of mass and Newton's law. Formally they come from basic fluid
mechanics...

(1) incompressible flow  ∇ v⋅ 0=    

Assume that the velocity in the z direction ranges linearly from 0 at the substrate to 
δη

δx
at the free surface, z=h:

v vxy k
z
h

δη

δt
⋅+=

  With no y dependence, ∇ v⋅ 0=  gives

t
η

d
d

h− ∇⋅ vxy⋅= conservation of mass

This expression for the incompressibility of the fluid shows that fluid diverging drom a region reduces the
film thickness.

(2) Euler's equation with a fixed force per mass g  
δv
δt

1
ρ

− ∇ P⋅ g−=    

Assume that the pressure has a hydrostatic z dependence and a small lateral
dependence...

P ρ g⋅ h z−( )⋅ Pxy+=



This satisfies the static (g) term, and requiring that P=0 at the displaced surface z=h+η
identifies the lateral dependence as Pxy ρ g⋅ η⋅=  . Euler's equation, again with no y

dependence, gives...

t
vd

d
g− ∇ η⋅= Euler's equation

Fluid accelerates from higher pressure below the deeper regions toward the lower pressure under
shallower regions.

The minimal third sound equations in 1D (the x direction) are then 

t
η

d
d

h− ∇⋅ vxy⋅=
t
vxy

d
d

g− ∇ η⋅=

Eliminating the velocity gives the wave equation for the surface displacements η and identifies the third
sound speed...

2
η

1

c2 2t
η

d

d

2
⋅= c3

2 g h⋅=

More Complete Derivation

Two features will be added to the simple model above: (1) In the context of the "two fluid model", the
normal component hydrodynamics are ignored. However, any small diffusive motion of the normal
component and thermal conversion between heat and the normal component will be accounted for by the
flow of heat. (2) The presence of the vapor will be included. The modifications to the above relations and a
new relation for heat flow are explained below:

Conservation of Mass  Film thicknedd changes defined by the total fluid density are brought about
through flow at the superfluid density or addition of new particled from the vapor. Jm is mass flux into
the film from the vapor.

ρ
t
η

d
d

⋅ h− ρs⋅
x

vd
d

⋅ Jm+=

Euler's Equation  The pressure gradient imposed by film thickness differences is replaced by the

chemical potential differences per mass: dμ
1
ρ

dP⋅ S dT⋅−= . The entropy, however, needs to be adjusted

for the case of the film with the free surface, essentially a new thermodynamic variable. The "partial
entropy" defined by Bergman invokes a thermomechanical force only for that part of the entropy that can
be diluted by superflow, i.e., only proportional to how much the total entropy per area changes with
thickness. The stimulated condensation gain term is the net force per mass associated with the
momentum of particle accomodation into the ground state fluid. 



F
M

1
M

∆p
∆t

⋅=
m Φnet⋅ A⋅ v⋅

ρ h⋅ A⋅
=

t
vd

d
g−

x
η

d
d

⋅ S
⎯

x
τ

d
d

⋅+
m Φnet⋅

ρ h⋅
v⋅+= S

⎯ 1
ρ

δΣ

δh
⎛⎜
⎝

⎞
⎠T

⋅=
δ

δh
h S⋅( )= fixed T

Heat Flow The total entropy per area (Σ) changes only by heat flow including (1) latent heat from net
condensing gas particles, (2) temperature imbalance of the exchanging vapor particles, (3) Thermal
exchange with the substrate, and (4) lateral conduction within the film...

t
Σ

d
d

JQ
T

=

Use... Σ ρ h⋅ S⋅= and JQ L Jm⋅
3
2

k⋅ Φ⋅ τ⋅− K τ⋅− σ 2x
τ

d

d

2
⋅+=

The first is the entropy per area. The second defines the four heat sources mentioned above. With careful
differentiation of Σ (illustrating the origin of the partial entropy in a simpler context than above)...

dΣ

dt
δΣ

δT
dT
dt

⋅
δΣ

δh
dη

dt
⋅+=

δΣ

δh
⎛⎜
⎝

⎞
⎠T

ρ S
⎯

⋅=
δΣ

δT
⎛⎜
⎝

⎞
⎠h

ρ h⋅ C⋅
T

dT
dt

⋅=

Combine all this into...

ρ h⋅ C⋅
dτ

dt
⋅ ρ T⋅ S

⎯
⋅

dη

dt
⋅+ L Jm⋅

3
2

k⋅ Φ⋅ τ⋅− K τ⋅− σ 2x
τ

d

d

2
⋅+=

Vapor Properties

The interaction with the vapor is assumed to be ballistic. The ideal gas particle flux Φ through a surface is
assumed to be the flux into and out of the film's surface in equilibrium. With the gas properties fixed at
this condition, the detailed balance is upset by either a temperature difference or a thickness difference
of the film away from equilibrium. The return flux from the film is assumed to that of the equilibruim vapor
at the perturbed conditions.

The flux Jm is defined into the film. Changes in flux result from changes in the local film parameters h and
T AND from the moving surface sweeping out vapor particles. Unless otherwise motivated, use the far
equilibrium gas conditions as that at the free surface. 

Φ Φ h T, ( )=
Pfilm h T, ( )

2 π⋅ m⋅ k⋅ T⋅
=

∆Φ Φ h η+ T τ+, ( ) Φ h T, ( )−=
δΦ

δT
τ⋅

δΦ

δh
η⋅+=



The mass flux is this imbalance PLUS an extra amount due to the motion of the film surface. An upward
moving film surface intercepts an additional amount as it sweeps through the gas density. 

Jm m− ∆Φ⋅ ρgas
dη

dt
⋅+= J into the film, ∆Φ net flux out of film ρgas

m Pfilm⋅

k T⋅
=

Jm m Φ⋅
1
Φ

−
δΦ

δT
τ⋅

δΦ

δh
η⋅+⎛⎜

⎝
⎞
⎠

⋅
2 π⋅ m⋅

k T⋅
δη

δt
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Note that this mass flux represents the oscillatory component only. Φ net couples to the oscillation
equations only through it's accomodation into the local flow.

The vapor pressure relation below is valid for T < ~ 1 K and includes the Boltzman factor for the film.

unsaturated pressure P h T, ( )
m

2 π⋅ h2⋅

⎛
⎜
⎝

⎞

⎠

3

2
k T⋅( )

5

2
⋅ exp

L0
T

−
Tv
T

h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅:=

particle flux from kinetic theory Φ h T, ( )
P h T, ( )

2 π⋅ m⋅ k⋅ T⋅
:=

or Φ h T, ( )
m

h3

k T⋅
2 π⋅

⎛⎜
⎝

⎞
⎠

2
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T

−
Tv
T
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h

⎛
⎜
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⋅−
⎡⎢
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⎤⎥
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⋅:=

The derivatives above can then be expressed interms of the unitless functions of T and h... 

AT
T
Φ

δΦ

δT
⋅= 2

L0
T

+
Tv
T

h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅+= Ah
h
Φ

δΦ

δh
⋅= 3

Tv
T

⋅
h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅=

Vapor Properties

Summary Equations and Solution

incompressible ρ
t
η

d
d

⋅ h− ρs⋅
x

vd
d

⋅ Jm+=

Euler 
t
vd

d
g−

x
η

d
d

⋅ S
⎯

x
τ

d
d

⋅+
m Φnet⋅

ρ h⋅
v⋅+=



heat balance ρ h⋅ C⋅
dτ

dt
⋅ ρ T⋅ S

⎯
⋅

dη

dt
⋅+ L Jm⋅

3
2

k⋅ Φ⋅ τ⋅− K τ⋅− σ 2x
τ

d

d

2
⋅+=

vapor exchange Jm m Φ⋅
1
Φ

−
δΦ

δT
τ⋅

δΦ

δh
η⋅+⎛⎜

⎝
⎞
⎠

⋅
2 π⋅ m⋅

k T⋅
δη

δt
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Cast into matrix form with unitless dynamical variables η

h
v
c

, 
τ

T
, ⎛⎜

⎝
⎞
⎠
 oscillating as ei q x⋅ ω t⋅−( )⋅  ...

m Φ⋅ i
ω

γh
⋅ Ah+⎛

⎜
⎝

⎞
⎠

⋅ i ω⋅ ρ⋅ h⋅−

i q⋅ g⋅ h⋅

m Φ⋅ L⋅
T

i
ω

γh
⋅ Ah+⎛

⎜
⎝

⎞
⎠

⋅ i ω⋅ ρ⋅ h⋅ S
⎯

⋅−

i q⋅ ρs⋅ h⋅ c⋅

i− ω⋅ c⋅
m Φnet⋅

ρ h⋅
c⋅−

0

m Φ⋅ AT⋅

i− q⋅ T⋅ S
⎯

⋅

m Φ⋅ L⋅
T

AT⋅
3
2

k⋅ Φ⋅+ K+ σ q2
⋅+ i ω⋅ ρ⋅ h⋅ C⋅−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

η

h

v
c

τ

T

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋅

using the following definitions...

γh
1
h

k T⋅
2 π⋅ m⋅

⋅= c γh h⋅=
k T⋅

2 π⋅ m⋅
=

AT
T
Φ

δΦ

δT
⋅= 2

L0
T

+
Tv
T

h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅+= Ah
h
Φ

δΦ

δh
⋅= 3

Tv
T

⋅
h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅=

Check the no-vapor (Φ, Φnet=0) case for insight into the full solution...

i− ω⋅ ρ⋅

i q⋅ g⋅ h⋅

i− ω⋅ ρ⋅ h⋅ S
⎯

⋅

i q⋅ ρs⋅ c⋅

i− ω⋅ c⋅
m Φnet⋅

ρ h⋅
c⋅−

0

0

i− q⋅ T⋅ S
⎯

⋅

K σ q2
⋅+ i ω⋅ ρ⋅ h⋅ C⋅−

⎛⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟

⎠

η

h

v
c

τ

T

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟

⎠

⋅ 0=

This is most easily solved by solving for τ in the last row and rewriting the 2x2 determinant for
the others and solving... 

τ

T
S
⎯

C
−

1

1 i
K σ q2

⋅+

ω ρ⋅ h⋅ C⋅
⋅+

⎛
⎜
⎝

⎞

⎠

⋅
η

h
⋅= ω

2 q2 ρs
ρ

⋅ g⋅ h⋅ 1
T S

⎯( )2
⋅

C g⋅ h⋅
1

1 i
K σ q2

⋅+

ω ρ⋅ h⋅ C⋅
⋅+

⎛
⎜
⎝

⎞

⎠

⋅+
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=



This is the low temperature limit where only non-vapor conduction is important. Two further limits are... 

τ

T
0=isothermal - perfect conduction ω

2 q2 ρs
ρ

⋅ g⋅ h⋅=

adiabatic - no conduction τ

T
S
⎯

C
−

η

h
⋅= ω

2 q2 ρs
ρ

⋅ g⋅ h⋅ 1
T S

⎯( )2
⋅

C g⋅ h⋅
+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

Note that the importance of the thermomechanical terms is gauged by essentiallt the ratio T S
⎯( )2

⋅

C g⋅ h⋅

Motivated by the same limit, follow the same manipulations with some new definitions......

γh
c
h

=
1
h

k T⋅
2 π⋅ m⋅

⋅= atomic speed in film thicknesses per time

γv
k Φ⋅

ρ h⋅ C⋅
= film-vapor thermal exchange rate

γs
K σ q2

⋅+

ρ h⋅ C⋅
= film-substrate thermal exchange rate

γnetx
m Φnet⋅

ρ h⋅
= net film particle exchange rate

Solve for τ/T in the last row
of the 3x3

τ

T

S
⎯

C
i

γv
ω

⋅
L0
T

⋅ i
ω

γh
⋅ Ah+⎛

⎜
⎝

⎞
⎠

⋅+

1 i
γv
ω

⋅
L0
T

AT⋅
3
2

+
⎛
⎜
⎝

⎞
⎠

⋅+ i
γs
ω

⋅+

−
η

h
⋅= D−

η

h
⋅= L

k L0⋅

m
=

Use in the remainig
2x2 system 

m Φ⋅ i
ω

γh
⋅ Ah+⎛

⎜
⎝

⎞
⎠

⋅ i ω⋅ ρ⋅ h⋅− m Φ⋅ AT⋅ D⋅−

i q⋅ g⋅ h⋅ i q⋅ T⋅ S
⎯

⋅ D⋅+

i q⋅ ρs⋅ h⋅ c⋅

i− ω⋅ c⋅ γnetx c⋅−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

η

h

v
c

⎛
⎜
⎜
⎜
⎝

⎞

⎟

⎠

⋅ 0=



v
q
ω

g h⋅ T S
⎯

⋅ D⋅+( )

1 i
m Φnet⋅

ω ρ⋅ h⋅
⋅−

⋅
η

h
⋅=

ω
2 q2 ρs

ρ
⋅ g h⋅ T S

⎯
⋅ D⋅+( )⋅ i ω⋅

m C⋅ γv⋅

k
⋅ i

ω

γh
⋅ Ah+ AT D⋅−⎛

⎜
⎝

⎞
⎠

⋅− γnetx i ω⋅
m C⋅ γv⋅

k
i

ω

γh
⋅ Ah+ AT D⋅−⎛

⎜
⎝

⎞
⎠

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

Note that D is the ratio of temperature
oscillations to thickness oscillations and
cannot be greater in magnitude than the
adiabic limit.

D

S
⎯

C
i

γv
ω

⋅
L0
T

⋅ i
ω

γh
⋅ Ah+⎛

⎜
⎝

⎞
⎠

⋅+

1 i
γv
ω

⋅
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T

AT⋅
3
2

+
⎛
⎜
⎝

⎞
⎠

⋅+ i
γs
ω

⋅+

=

Vapor Exchange Only K σ= Φnet= 0=

D

S
⎯

C
i

γv
ω

⋅
L0
T

⋅ i
ω

γh
⋅ Ah+⎛

⎜
⎝

⎞
⎠

⋅+

1 i
γv
ω

⋅
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T

AT⋅
3
2

+
⎛
⎜
⎝

⎞
⎠

⋅+

= ω
2 q2 ρs

ρ
⋅ g h⋅ T S

⎯
⋅ D⋅+( )⋅ i ω⋅

m C⋅ γv⋅

k
⋅ i

ω

γh
⋅ Ah+ AT D⋅−⎛

⎜
⎝

⎞
⎠

⋅−=

D

L0
T

3
Tv
T

⋅
h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅

L0
T

2
L0
T

+
Tv
T

h1
h

⎛
⎜
⎝

⎞
⎠
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⋅+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅
3
2

+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

=
1

1
1
3

L0
Tv

⋅
h
h1

⎛
⎜
⎝

⎞
⎠

3
⋅+

= =1/10 approximately 

ω
2 q2 ρs

ρ
⋅ g h⋅ T S

⎯
⋅ D⋅+( )⋅ i ω⋅

m C⋅ γv⋅

k
⋅ i

ω

γh
⋅ Ah+ AT D⋅−⎛

⎜
⎝

⎞
⎠

⋅−=



AT
T
Φ

δΦ

δT
⋅= 2

L0
T

+
Tv
T

h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅+= Ah
h
Φ

δΦ

δh
⋅= 3

Tv
T

⋅
h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅=

...looking for 1
T S⋅
L

+ terms 

Stimulated Condensation 

The stimulated condensation gain compensates for damping. Assuming it and the damping terms are
small, the solution is basically, with    representing all of the loss trms (approximately)     

ω
2

ω0
2 i ω⋅ γnetx γloss−( )⋅+

m C⋅ γv⋅

k
i

ω

γh
⋅ Ah+ AT D⋅−⎛

⎜
⎝

⎞
⎠

⋅ γnetx⋅−= γnetx
m Φnet⋅

ρ h⋅
=

The last term proportional to γnetx is usually small, but could be as high as 10% at the higher
temperatures. It will slightly decrease the gain and shift the frequency down relative to the first iω term
alone.

The effect on the Q of the third sound (neglecting the small correction)  is 

1
Q

1
Q0

m Φnet⋅

ω0 ρ⋅ h⋅
−=

The critical flux for self oscillation is 

Φcrit
ω0 ρ⋅ h⋅

m Q0⋅
= or dN

dt
2

Nfilm
τdecay

⋅=

which states that all the atoms in the film need to be replaced in half the free decay time of the third
sound.

Numerical Evaluation

(2,1)S mode wavenumber of the stimulated
condensation resonator

q
3.05424
0.00675

:= q 452.48=

Pick up the thermodynamic data from "Film Thermodynamics a.xls" after taking the partial entropy
derivative. The resuls are in "numerical thermo results.xls" for a few thicknesses.

dat READPRN "b:\physics\films\thermal\sim_dat\thermo_3.txt"( ):= h 3 10 9−
⋅:=



j 0 rows dat( ) 1−..:= Tj datj 0, := c30
3 k⋅ Tv⋅

m

h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅:= g
c30
h

:=

Sj datj 1, := Spj datj 2, := Cj datj 3, := nf j 1 1.46
h1
h

⋅− datj 4, −:=

Here is a plot of the entropy and partial entropy to heat capacity ratio
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Sj

Cj

Spj

Cj

Tj

This is the atomic speed parameter γhj

1
h

k Tj⋅

2 π⋅ m⋅
⋅:=

This is the thermal vapor cooling rate γvj

k Φ h Tj, ( )⋅

ρ h⋅ Cj⋅
:=

Stimulated condensation film exchange
rate -- the heater loop particle flux
measured in film equivalents per
second.

γnetx 0:=

γsj
1000:=Subtrate thermal relaxation rate

Sj Spj:=Use the partial entropy

vaper parameters ATj
2

L0
Tj

+
Tv
Tj

h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅+:= Ahj
3

Tv
Tj

⋅
h1
h

⎛
⎜
⎝

⎞
⎠

3

⋅:=



This is the normallized negative
ratio of thermal oscillations to
thickness oscillations 

D j ω, ( )

Sj

Cj
i

γvj
L0⋅

ω Tj⋅
⋅ i

ω

γhj

⋅ Ahj
+⎛

⎜
⎝

⎞

⎠
⋅+

1 i
γvj

ω
⋅

L0
Tj

ATj
⋅

3
2

+
⎛⎜
⎜⎝

⎞

⎠
⋅+ i

γsj

ω
⋅+

:=

τ

T
D−

η

h
⋅=

ω
2 q2 ρs

ρ
⋅ g h⋅ T S

⎯
⋅ D⋅+( )⋅ i ω⋅

m C⋅ γv⋅

k
⋅ i

ω

γh
⋅ Ah+ AT D⋅−⎛

⎜
⎝

⎞
⎠

⋅− γnetx i ω⋅
m C⋅ γv⋅

k
i

ω

γh
⋅ Ah+ AT D⋅−⎛

⎜
⎝

⎞
⎠

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

Solve this for ω:

Ω j ω, ( ) u γvj

m Cj⋅

k
⋅ i

ω

γhj

⋅ Ahj
+ ATj

D j ω, ( )⋅−⎛
⎜
⎝

⎞

⎠
⋅←

q2 nf j⋅ c302 Tj Sj⋅ D j ω, ( )⋅+⎛
⎝

⎞
⎠⋅ γnetx i ω⋅ u−( )⋅+ i ω⋅ u⋅−

:=

Start at low T...

ω0 nf 0 c30⋅ q⋅:= ω0 root Ω 0 ω0, ( ) ω0− ω0, ( ):= ω0 8.455 103
× 5.438i 10 3−

×−=

Step up in T using the previous solution for the root guess... 

j 1 rows dat( ) 1−..:= ωj u ωj 1−←

root Ω j u, ( ) u− u, ( )

:=

Calculate some other interesting numbers...

j 0 rows dat( ) 1−..:= dj D j ωj, ( ):= c3j

Re ωj( )
q

:= Qj
1
2

−
Re ωj( )
Im ωj( )

⋅:=
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